RESUMO
Trypanosoma cruzi is the etiological agent of Chagas disease, an important cause of infectious chronic myocardiopathy in Latin America. The life cycle of the parasite involves two main hosts: a triatomine (arthropod hematophagous vector) and a mammal. Epimastigotes are flagellated forms inside the triatomine gut; they mature in its intestine into metacyclic trypomastigotes, the infective form for humans. Parasites attach despite the shear stress generated by fluid flow in the intestines of the host, but little is known about the mechanisms that stabilize attachment in these conditions. Here, we describe the effect of varying levels of shear stress on attached T. cruzi epimastigotes using a parallel plate flow chamber. When flow is applied, parasites are partially dragged but maintain a connection to the surface via ~40 nm wide filaments (nanotubules) and the activity of flagella is reduced. When flow stops, parasites return near their original position and flagellar motion resumes. Nanotubule elongation increases with increasing shear stress and is consistent with a model of membrane tether extension under force. Fluorescent probes used to confirm membrane composition also show micron-wide anchoring pads at the distal end of the nanotubules. Multiple tethering accounts for more resistance to large shear stresses and for reduced flagellar movement when flow is stopped. The formation of membrane nanotubules is a possible mechanism to enhance adherence to host cells under shear stress, favoring the continuity of the parasite´s life cycle.
Assuntos
Doença de Chagas , Trypanosoma cruzi , Humanos , Animais , Doença de Chagas/parasitologia , Estágios do Ciclo de Vida , MamíferosRESUMO
INTRODUCTION: In this study, we explore the role of oxidative stress produced by NOX2-containing NADPH oxidase as a molecular mechanism causing capillary stalling and cerebral blood flow deficits in the APP/PS1 mouse model of AD. METHODS: We inhibited NOX2 in APP/PS1 mice by administering a 10 mg/kg dose of the peptide inhibitor gp91-ds-tat i.p., for two weeks. We used in vivo two-photon imaging to measure capillary stalling, penetrating arteriole flow, and vascular inflammation. We also characterized short-term memory function and gene expression changes in cerebral microvessels. RESULTS: We found that after NOX2 inhibition capillary stalling, as well as parenchymal and vascular inflammation, were significantly reduced. In addition, we found a significant increase in penetrating arteriole flow, followed by an improvement in short-term memory, and downregulation of inflammatory gene expression pathways. DISCUSSION: Oxidative stress is a major mechanism leading to microvascular dysfunction in AD, and represents an important therapeutic target.
RESUMO
Increased incidence of stalled capillary blood flow caused by adhesion of leucocytes to the brain microvascular endothelium leads to a 17% reduction of cerebral blood flow and exacerbates short-term memory loss in multiple mouse models of Alzheimer's disease. Here, we report that vascular endothelial growth factor (VEGF) signalling at the luminal side of the brain microvasculature plays an integral role in the capillary stalling phenomenon of the APP/PS1 mouse model. Administration of the anti-mouse VEGF-A164 antibody, an isoform that inhibits blood-brain barrier hyperpermeability, reduced the number of stalled capillaries within an hour of injection, leading to an immediate increase in average capillary blood flow but not capillary diameter. VEGF-A inhibition also reduced the overall endothelial nitric oxide synthase protein concentrations, increased occludin levels and decreased the penetration of circulating Evans Blue dye across the blood-brain barrier into the brain parenchyma, suggesting increased blood-brain barrier integrity. Capillaries prone to neutrophil adhesion after anti-VEGF-A treatment also had lower occludin concentrations than flowing capillaries. Taken together, our findings demonstrate that VEGF-A signalling in APP/PS1 mice contributes to aberrant endothelial nitric oxide synthase /occludin-associated blood-brain barrier permeability, increases the incidence of capillary stalls, and leads to reductions in cerebral blood flow. Reducing leucocyte adhesion by inhibiting luminal VEGF signalling may provide a novel and well-tolerated strategy for improving brain microvascular blood flow in Alzheimer's disease patients.
Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Capilares , Permeabilidade Capilar , Circulação Cerebrovascular/fisiologia , Modelos Animais de Doenças , Humanos , Camundongos , Óxido Nítrico Sintase Tipo III/metabolismo , Ocludina/metabolismo , Fator A de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular/metabolismoRESUMO
Exercise exerts a beneficial effect on the major pathological and clinical symptoms associated with Alzheimer's disease in humans and mouse models of the disease. While numerous mechanisms for such benefits from exercise have been proposed, a clear understanding of the causal links remains elusive. Recent studies also suggest that cerebral blood flow in the brain of both Alzheimer's patients and mouse models of the disease is decreased and that the cognitive symptoms can be improved when blood flow is restored. We therefore hypothesized that the mitigating effect of exercise on the development and progression of Alzheimer's disease may be mediated through an increase in the otherwise reduced brain blood flow. To test this idea, we performed a pilot study to examine the impact of three months of voluntary wheel running in a small cohort of ~1-year-old APP/PS1 mice on short-term memory function, brain inflammation, amyloid deposition, and baseline cerebral blood flow. Our findings that exercise led to a trend toward improved spatial short-term memory, reduced brain inflammation, markedly increased neurogenesis in the dentate gyrus, and a reduction in hippocampal amyloid-beta deposits are consistent with other reports on the impact of exercise on the progression of Alzheimer's related symptoms in mouse models. Notably, we did not observe any impact of wheel running on overall baseline blood flow nor on the incidence of non-flowing capillaries, a mechanism we recently identified as one contributing factor to cerebral blood flow deficits in mouse models of Alzheimer's disease. Overall, our findings add to the emerging picture of differential effects of exercise on cognition and blood flow in Alzheimer's disease pathology by showing that capillary stalling is not decreased following exercise.
Assuntos
Doença de Alzheimer/fisiopatologia , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/irrigação sanguínea , Terapia por Exercício , Presenilina-1/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Circulação Cerebrovascular , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Neurogênese , Condicionamento Físico Animal , Projetos Piloto , Presenilina-1/genética , TransgenesRESUMO
Obesity is linked to increased risk for and severity of Alzheimer's disease (AD). Cerebral blood flow (CBF) reductions are an early feature of AD and are also linked to obesity. We recently showed that non-flowing capillaries, caused by adhered neutrophils, contribute to CBF reduction in mouse models of AD. Because obesity could exacerbate the vascular inflammation likely underlying this neutrophil adhesion, we tested links between obesity and AD by feeding APP/PS1 mice a high fat diet (Hfd) and evaluating behavioral, physiological, and pathological changes. We found trends toward poorer memory performance in APP/PS1 mice fed a Hfd, impaired social interactions with either APP/PS1 genotype or a Hfd, and synergistic impairment of sensory-motor function in APP/PS1 mice fed a Hfd. The Hfd led to increases in amyloid-beta monomers and plaques in APP/PS1 mice, as well as increased brain inflammation. These results agree with previous reports showing obesity exacerbates AD-related pathology and symptoms in mice. We used a crowd-sourced, citizen science approach to analyze imaging data to determine the impact of the APP/PS1 genotype and a Hfd on capillary stalling and CBF. Surprisingly, we did not see an increase in the number of non-flowing capillaries or a worsening of the CBF deficit in APP/PS1 mice fed a Hfd as compared to controls, suggesting that capillary stalling is not a mechanistic link between a Hfd and increased severity of AD in mice. Reducing capillary stalling by blocking neutrophil adhesion improved CBF and short-term memory function in APP/PS1 mice, even when fed a Hfd.
Assuntos
Doença de Alzheimer/patologia , Circulação Cerebrovascular/fisiologia , Dieta Hiperlipídica , Neurônios/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Comportamento Animal , Vasos Sanguíneos/diagnóstico por imagem , Vasos Sanguíneos/fisiologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Genótipo , Masculino , Memória de Curto Prazo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Presenilina-1/genéticaRESUMO
We show that third harmonic generation (THG) microscopy using a 1-MHz train of 1,300-nm femtosecond duration laser pulses enabled visualization of the structure and quantification of flow speed in the cortical microvascular network of mice to a depth of > 1 mm. Simultaneous three-photon imaging of an intravascular fluorescent tracer enabled us to quantify the cell free layer thickness. Using the label-free imaging capability of THG, we measured flow speed in different types of vessels with and without the presence of an intravascular tracer conjugated to a high molecular weight dextran (2 MDa FITC-dextran, 5% w/v in saline, 100 µl). We found a â¼20% decrease in flow speeds in arterioles and venules due to the dextran-conjugated FITC, which we confirmed with Doppler optical coherence tomography. Capillary flow speeds did not change, although we saw a â¼7% decrease in red blood cell flux with dextran-conjugated FITC injection.