Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 375(2085)2017 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-27956508

RESUMO

We present experiments and numerical simulations of hypervelocity impacts of 0.5 mm steel spheres into graphite, for velocities ranging between 1100 and 4500 m s-1 Experiments have evidenced that, after a particular striking velocity, depth of penetration no longer increases but decreases. Moreover, the projectile is observed to be trapped below the crater surface. Using numerical simulations, we show how this experimental result can be related to both materials, yield strength. A Johnson-Cook model is developed for the steel projectile, based on the literature data. A simple model is proposed for the graphite yield strength, including a piecewise pressure dependence of the Drucker-Prager form, which coefficients have been chosen to reproduce the projectile penetration depth. Comparisons between experiments and simulations are presented and discussed. The damage properties of both materials are also considered, by using a threshold on the first principal stress as a tensile failure criterion. An additional compressive failure model is also used for graphite when the equivalent strain reaches a maximum value. We show that the experimental crater diameter is directly related to the graphite spall strength. Uncertainties on the target yield stress and failure strength are estimated.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

2.
Opt Lett ; 39(3): 674-7, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24487896

RESUMO

In our study, the laser-induced damage densities on a fused silica surface produced by multiple longitudinal mode (MLM) pulses are found to be higher than those produced by single longitudinal mode pulses at 1064 nm. This behavior is explained by the enhancement of the three-photon absorption due to the intensity spikes related to longitudinal mode beating. At 355 nm, the absorption is linear and an opposite behavior occurs. It can be explained with the help of a process involving thermomechanics coupled with the fine time structure of MLM pulses, leading to the possible annealing of part of the absorbent defects.

3.
Phys Rev Lett ; 84(6): 1188-91, 2000 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-11017475

RESUMO

An intense beam of relativistic electrons (800 A, 6.7 MeV) has been bunched at 35 GHz by a free-electron laser, in which output power levels exceeding 100 MW were obtained. The beam was then extracted and transported through a resonant cavity, which was excited by its passage. Microwave power levels of 10 MW were extracted from the cavity, in reasonable agreement with the simple formula which relates power to known properties of both the beam and the cavity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA