Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Bioengineering (Basel) ; 11(5)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38790369

RESUMO

Recent advancements in computational modeling offer opportunities to refine total knee arthroplasty (TKA) design and treatment strategies. This study developed patient-specific simulator external boundary conditions (EBCs) using a PID-controlled lower limb finite element (FE) model. Calibration of the external actuation required to achieve measured patient-specific joint loading and motion was completed for nine patients with telemetric implants during gait, stair descent, and deep knee bend. The study also compared two EBC scenarios: activity-specific hip AP motion and pelvic rotation (that was averaged across all patients for an activity) and patient-specific hip AP motion and pelvic rotation. Including patient-specific data significantly improved reproduction of joint-level loading, reducing root mean squared error between the target and achieved loading by 28.7% and highlighting the importance of detailed patient data in replicating joint kinematics and kinetics. The principal component analysis (PCA) of the EBCs for the patient dataset showed that one component represented 77.8% of the overall variation, while the first three components represented 97.8%. Given the significant loading variability within the patient cohort, this group of patient-specific models can be run individually to provide insight into expected TKA mechanics variability, and the PCA can be utilized to further create reasonable EBCs that expand the variability evaluated.

2.
J Arthroplasty ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38061399

RESUMO

BACKGROUND: Total knee arthroplasty (TKA) implants have continued to evolve to accommodate new understandings of knee mechanics. The medial-pivot implant is a newer design, which is intended to limit anterior-posterior translation in the medial compartment while allowing lateral compartment translation. However, evidence for a generalized medial-pivot characteristic across all activities is limited. The purpose of the study was to quantify and compare in vivo knee joint kinematics using high-speed stereo radiography during activities of daily living in patients who have undergone a TKA with a cruciate sacrificing medial-pivot implant to age-matched and sex-matched native controls. METHODS: Fifteen participants (7 patients, 4 women, mean age 70 years and 8 nonsymptomatic controls, 4 women, mean age 64 years) performed 6 functional tasks in high-speed stereo radiography: deep-knee lunge, chair rise, step down, gait, gait with 90° turn, and seated knee extension. Translational differences between groups (surgical versus control) were assessed for the medial and lateral condyle, while pivot location was normalized to subject-specific tibial plateau geometry. RESULTS: The surgical cohort displayed a more constrained medial condyle that provided greater stability of the medial compartment and did not result in the paradoxical anterior translation at mid-flexion angles during weight-bearing activities, but was associated with less condylar translation than native knees. Additionally, the transverse tibial pivot location occurs most commonly in the middle third of the tibial plateau and secondarily on the medial third. CONCLUSIONS: Some variability in pivot location occurs between activities and is more in nonsymptomatic, native knee controls.

3.
Front Bioeng Biotechnol ; 11: 1153692, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37274172

RESUMO

Skeletal muscles have a highly organized hierarchical structure, whose main function is to generate forces for movement and stability. To understand the complex heterogeneous behaviors of muscles, computational modeling has advanced as a non-invasive approach to evaluate relevant mechanical quantities. Aiming to improve musculoskeletal predictions, this paper presents a framework for modeling 3D deformable muscles that includes continuum constitutive representation, parametric determination, model validation, fiber distribution estimation, and integration of multiple muscles into a system level for joint motion simulation. The passive and active muscle properties were modeled based on the strain energy approach with Hill-type hyperelastic constitutive laws. A parametric study was conducted to validate the model using experimental datasets of passive and active rabbit leg muscles. The active muscle model with calibrated material parameters was then implemented to simulate knee bending during a squat with multiple quadriceps muscles. A computational fluid dynamics (CFD) fiber simulation approach was utilized to estimate the fiber arrangements for each muscle, and a cohesive contact approach was applied to simulate the interactions among muscles. The single muscle simulation results showed that both passive and active muscle elongation responses matched the range of the testing data. The dynamic simulation of knee flexion and extension showed the predictive capability of the model for estimating the active quadriceps responses, which indicates that the presented modeling pipeline is effective and stable for simulating multiple muscle configurations. This work provided an effective framework of a 3D continuum muscle model for complex muscle behavior simulation, which will facilitate additional computational and experimental studies of skeletal muscle mechanics. This study will offer valuable insight into the future development of multiscale neuromuscular models and applications of these models to a wide variety of relevant areas such as biomechanics and clinical research.

4.
J Arthroplasty ; 38(10): 2068-2074, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37236287

RESUMO

BACKGROUND: Dynamic radiographic measurements of 3-dimensional (3-D) total knee arthroplasty (TKA) kinematics have provided important information for implant design and surgical technique for over 30 years. However, current methods of measuring TKA kinematics are too cumbersome, inaccurate, or time-consuming for practical clinical application. Even state-of-the-art techniques require human-supervision to obtain clinically reliable kinematics. Eliminating human supervision could potentially make this technology practical for clinical use. METHODS: We demonstrate a fully autonomous pipeline for quantifying 3D-TKA kinematics from single-plane radiographic imaging. First, a convolutional neural network (CNN) segmented the femoral and tibial implants from the image. Second, those segmented images were compared to precomputed shape libraries for initial pose estimates. Lastly, a numerical optimization routine aligned 3D implant contours and fluoroscopic images to obtain the final implant poses. RESULTS: The autonomous technique reliably produces kinematic measurements comparable to human-supervised measures, with root-mean-squared differences of less than 0.7 mm and 4° for our test data, and 0.8 mm and 1.7° for external validation studies. CONCLUSION: A fully autonomous method to measure 3D-TKA kinematics from single-plane radiographic images produces results equivalent to a human-supervised method, and may soon make it practical to perform these measurements in a clinical setting.


Assuntos
Artroplastia do Joelho , Humanos , Fenômenos Biomecânicos , Raios X , Fêmur , Aprendizado de Máquina
5.
J Biomech ; 149: 111487, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36868041

RESUMO

Representative data of asymptomatic, native-knee kinematics is important when studying changes in knee function across the lifespan. High-speed stereo radiography (HSSR) provides a reliable measure of knee kinematics to <1 mm of translation and 1° of rotation, but studies often have limited statistical power to make comparisons between groups or measure the contribution of individual variability. The purpose of this study is to examine in vivo condylar kinematics to quantify the transverse center-of-rotation, or pivot, location across the flexion range and challenge the medial-pivot paradigm in asymptomatic knee kinematics. We quantified the pivot location during supine leg press, knee extension, standing lunge, and gait for 53 middle-aged and older adults (27 men; 26 women: 50.8 ± 7.0 yrs, 1.75 ± 0.1 m, 79.1 ± 15.4 kg). A central- to medial-pivot location was identified for all activities with increased knee flexion associated with posterior translation of the center-of-rotation. The association between knee angle and anterior-posterior center-of-rotation location was not as strong as the relation between medial-lateral and anterior-posterior location, excluding gait. The Pearson's correlation for gait was stronger between knee angle and anterior-posterior center-of-rotation location (P < 0.001) than medial-lateral and anterior-posterior location (P = 0.0122). Individual variability accounted for a measurable proportion in variance explained of center-of-rotation location. Unique to gait, the lateral translation of center-of-rotation location resulted in the anterior translation of center-of-rotation at <10° knee flexion. Furthermore, no association between vertical ground-reaction force and center-of-rotation was identified.


Assuntos
Marcha , Articulação do Joelho , Masculino , Pessoa de Meia-Idade , Feminino , Humanos , Idoso , Articulação do Joelho/diagnóstico por imagem , Rotação , Grupo Social , Posição Ortostática
6.
J Orthop Res ; 41(8): 1687-1696, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36691865

RESUMO

Medial patellofemoral ligament reconstruction (MPFLR) has emerged as the procedure of choice for recurrent patellar dislocation. This addresses soft tissue injury but does not address underlying anatomic factors, including trochlear dysplasia, that are commonly present and increase risk of dislocation. Quantification of the stability offered by other surgical interventions, namely, medializing tibial tubercle osteotomy (mTTO) and trochleoplasty, with and without MPFLR, may provide insight for surgical choices in patients with trochlear dysplasia. We developed subject-specific finite element models based on magnetic resonance scans from a cohort of 20 patients with trochlear dysplasia and recurrent patellar dislocation. The objectives of this study were (1) to compare patella stability after mTTO and trochleoplasty procedures; (2) to evaluate whether it is necessary to perform an MPFLR in combination with the mTTO or trocheoplasty procedure; and (3) to quantify the robustness of patellar stability to variability in knee kinematics. Trochleoplasty performed better than mTTO at stabilizing the patella between 5° and 30° flexion. For both mTTO and trochleoplasty procedures, it was beneficial to also perform MPFLR-inclusion of MPFLR halved the magnitude of patellar laxity predicted in the simulations. Simulations that did not include any medial patellofemoral ligament restraint were also more sensitive to variation in tibiofemoral internal-external kinematics.


Assuntos
Luxações Articulares , Instabilidade Articular , Luxação Patelar , Articulação Patelofemoral , Humanos , Luxação Patelar/diagnóstico por imagem , Luxação Patelar/cirurgia , Fêmur/cirurgia , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia , Articulação do Joelho/patologia , Tíbia/cirurgia , Ligamentos Articulares/cirurgia , Osteotomia/métodos , Instabilidade Articular/patologia , Articulação Patelofemoral/cirurgia
7.
J Orthop Res ; 41(1): 115-129, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35437819

RESUMO

Micromotion magnitudes exceeding 150 µm may prevent bone formation and limit fixation after cementless total knee arthroplasty (TKA). Many factors influence the tray-bone interface micromotion but the critical parameters and sensitivities are less clear. In this study, we assessed the impacts of surgical (tray alignment, tibial coverage, and resection surface preparation), patient (bone properties and tibiofemoral kinematics), and implant design (tray feature and surface friction) factors on tray-bone interface micromotions during a series of activities of daily living. Micromotion was estimated via three previously validated implant-bone finite element models and tested under gait, deep knee bending, and stair descent loads. Overall, the average micromotion across the tray-bone cementless contact interface ranged from 9.3 to 111.4 µm, and peak micromotion was consistently found along the anterior tray edge. Maximizing tibial coverage above a properly sized tibial tray (an average of 12.3% additional area) had minimal impact on micromotion. A 1 mm anterior tray alignment change reduced the average micromotion by an average of 16.1%. Two-degree tibial angular resection errors reduced the area for bone ingrowth up to 48.1%. Differences on average micromotion from ±25% changes in bone moduli were up to 75.5%. A more posterior tibiofemoral contact due to additional 100 N posterior force resulted in an average of 79.3% increase on average micromotion. Overall, careful surgical technique, patient selection, and controlling kinematics through articular design all contribute meaningfully to minimizing micromotion in cementless TKA, with centralizing the load transfer to minimize the resulting moment at the anterior tray perimeter a consistent theme.


Assuntos
Artroplastia do Joelho , Humanos , Atividades Cotidianas
8.
Clin Biomech (Bristol, Avon) ; 100: 105801, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36327548

RESUMO

BACKGROUND: Condyle-spanning plate-screw constructs have shown potential to lower the risks of femoral refractures after the healing of a primary Vancouver type B1 periprosthetic femoral fracture. Limited information exists to show how osteoporosis (a risk factor for periprosthetic femoral fractures) may affect the plate fixation during activities of daily living. METHODS: Using total hip arthroplasty and plate-implanted finite element models of three osteoporotic femurs, this study simulated physiological loads of three activities of daily living, as well as osteoporosis associated muscle weakening, and compared the calculated stress/strain, load transfer and local stiffness with experimentally validated models of three healthy femurs. Two plating systems and two construct lengths (a diaphyseal construct and a condyle-spanning construct) were modeled. FINDINGS: Osteoporotic femurs showed higher bone strain (21.9%) and higher peak plate stress (144.3%) as compared with healthy femurs. Compared with shorter diaphyseal constructs, condyle-spanning constructs of two plating systems reduced bone strains in both healthy and osteoporotic femurs (both applying 'the normal' and 'the weakened muscle forces') around the most distal diaphyseal screw and in the distal metaphysis, both locations where secondary fractures are typically reported. The lowered resultant compressive force and the increased local compressive stiffness in the distal diaphysis and metaphysis may be associated with strain reductions via condyle-spanning constructs. INTERPRETATION: Strain reductions in condyle-spanning constructs agreed with the clinically reported lowered risks of femoral refractures in the distal diaphysis and metaphysis. Multiple condylar screws may mitigate the concentrated strains in the lateral condyle, especially in osteoporotic femurs.


Assuntos
Atividades Cotidianas , Fraturas do Fêmur , Humanos , Densidade Óssea , Fraturas do Fêmur/cirurgia
9.
J Mech Behav Biomed Mater ; 136: 105507, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36209592

RESUMO

The initial fixation of cementless tibial trays after total knee arthroplasty is critical to ensure bony ingrowth and long-term fixation. Various fixed-bearing implant designs that utilize different fixation features, surface coatings, and bony preparations to facilitate this initial stability are currently used clinically. However, the role of tibiofemoral conformity and the effect of different tray fixation features on initial stability are still unclear. This study assessed the implant stability of two TKA designs during a series of simulated daily activities including experimental testing and corresponding computational models. Tray-bone interface micromotions and the porous area ideal for bone ingrowth were investigated computationally and compared between the two designs. The isolated effect of femoral-insert conformity and fixation features on the micromotion was examined separately by virtually exchanging design features. The peak interface micromotions predicted were at least 47% different for the two designs, which was a combined result of different femoral-insert conformity (contributed 79% of the micromotion difference) and fixation features (21%). A more posterior femoral-insert contact due to lower tibiofemoral conformity in a force-controlled simulation significantly increased the micromotion and reduced the surface area ideal for bone ingrowth. The maximum difference in peak micromotions caused by only changing the fixation features was up to 33%. Overall, the moment arm from the insert articular contact point to the anterolateral tray perimeter was the primary factor correlated to peak and average micromotion. Our results indicated that tray-bone micromotion could be minimized by centralizing the load transfer and optimizing the fixation features.


Assuntos
Artroplastia do Joelho , Prótese do Joelho , Fêmur/cirurgia , Tíbia/cirurgia , Próteses e Implantes , Osso e Ossos/cirurgia , Desenho de Prótese
10.
J Biomech ; 138: 111118, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35576630

RESUMO

The standing lunge is an activity commonly used to quantify in-vivo knee kinematics with fluoroscopy. The ability to perform the standing lunge varies between subjects and can necessitate movement accommodations to successfully complete the desired range of motion. We proposed a supine leg press as an alternative to the standing lunge that aimed to provide a similar evaluation of knee motion while increasing the measured range of motion. Tibiofemoral kinematics of 53 non-symptomatic adults (27 men, 26 women, 50.8 ± 7.0 yrs.) were calculated from the tracked high-speed stereo radiography (HSSR) images for supine leg press and standing lunge using CT-segmented bony geometries of the right lower limb. The supine leg press proved to be a useful alternative to the standing lunge while providing 46.2° greater range of motion in knee flexion. The difference in angle-matched kinematics across a 100° flexion range between the leg press and lunge was 0.70° in varus-valgus rotation, 1.5° in internal-external rotation, 1.0 mm in medial-lateral translation, 2.3 mm in anterior-posterior translation, and 0.46 mm in superior-inferior translation for men. The angle-matched difference for women across 100° was 0.58° in varus-valgus rotation, 2.4° internal-external rotation, 0.70 mm medial-lateral translation, 2.1 mm anterior-posterior translation, and 0.78 mm superior-inferior translation. The similar kinematics, while having a greater range of motion, and control of the applied load makes the supine leg press an alternative for quantifying in-vivo knee kinematics.


Assuntos
Articulação do Joelho , Perna (Membro) , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Articulação do Joelho/diagnóstico por imagem , Masculino , Radiografia , Amplitude de Movimento Articular
11.
J Orthop Res ; 40(3): 604-613, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33928682

RESUMO

Dislocation remains the leading indication for revision of total hip arthroplasty (THA). The objective of this study was to use a computational model to compare the overall resistance to both anterior and posterior dislocation for the available THA constructs commonly considered by surgeons attempting to produce a stable joint. Patient-specific musculoskeletal models of THA patients performing activities consistent with anterior and posterior dislocation were developed to calculate joint contact forces and joint positions used for simulations of dislocation in a finite element model of the implanted hip that included an experimentally calibrated hip capsule representation. Dislocations were then performed with consideration of offset using +5 and +9 offset, iteratively with three lipped liner variations in jump distance (10°, 15°, and 20° lips), a size 40 head, and a dual-mobility construct. Dislocation resistance was quantified as the moment required to dislocate the hip and the integral of the moment-flexion angle (dislocation energy). Increasing head diameter increased resistive moment on average for anterior and posterior dislocation by 22% relative to a neutral configuration. A lipped liner resulted in increases in the resistive moment to posterior dislocation of 9%, 19%, and 47% for 10°, 15°, and 20° lips, a sensitivity of approximately 2.8 Nm/mm of additional jump distance. A dual-mobility acetabular design resulted in an average 38% increase in resistive moment and 92% increase in dislocation energy for anterior and posterior dislocation. A quantitative understanding of tradeoffs in the dislocation risk inherent to THA construct options is valuable in supporting surgical decision making.


Assuntos
Artroplastia de Quadril , Luxação do Quadril , Prótese de Quadril , Luxações Articulares , Acetábulo/cirurgia , Artroplastia de Quadril/métodos , Articulação do Quadril/cirurgia , Humanos , Desenho de Prótese , Falha de Prótese , Amplitude de Movimento Articular , Reoperação
12.
J Biomech Eng ; 144(3)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34505126

RESUMO

Plate fractures after fixation of a Vancouver Type B1 periprosthetic femoral fracture (PFF) are difficult to treat and could lead to severe disability. However, due to the lack of direct measurement of in vivo performance of the PFF fixation construct, it is unknown whether current standard mechanical tests or previous experimental and computational studies have appropriately reproduced the in vivo mechanics of the plate. To provide a basis for the evaluation and development of appropriate mechanical tests for assessment of plate fracture risk, this study applied loads of common activities of daily living (ADLs) to implanted femur finite element (FE) models with PFF fixation constructs with an existing or a healed PFF. Based on FE simulated plate mechanics, the standard four-point-bend test adequately matched the stress state and the resultant bending moment in the plate as compared with femur models with an existing PFF. In addition, the newly developed constrained three-point-bend tests were able to reproduce plate stresses in models with a healed PFF. Furthermore, a combined bending and compression cadaveric test was appropriate for risk assessment including both plate fracture and screw loosening after the complete healing of PFF. The result of this study provides the means for combined experimental and computational preclinical evaluation of PFF fixation constructs.


Assuntos
Fraturas do Fêmur , Fraturas Periprotéticas , Atividades Cotidianas , Placas Ósseas , Fraturas do Fêmur/cirurgia , Fêmur , Fixação Interna de Fraturas , Humanos , Testes Mecânicos , Fraturas Periprotéticas/cirurgia
13.
J Mech Behav Biomed Mater ; 125: 104960, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34794043

RESUMO

Secondary femoral fractures after the successful plate-screw fixation of a primary Vancouver type B1 periprosthetic femoral fracture (PFF) have been associated with the altered state of stress/strain in the femur as the result of plating. The laterally implanted condyle-spanning plate-screw constructs have shown promises clinically in avoiding secondary bone and implant failures as compared with shorter diaphyseal plates. Though the condyle-spanning plating has been hypothesized to avoid stress concentration in the femoral diaphysis through increasing the working length of the plate, biomechanical evidence is lacking on how plate length may impact the stress/strain state of the implanted femur. Through developing and experimentally validating finite element (FE) models of 3 cadaveric femurs, this study investigated the impact of plating on bone strains, load transfer and local stiffness, which were compared between FE models of 2 different plating systems that each had a diaphyseal configuration and a condyle-spanning configuration. Under simulated gait-loading, the condyle-spanning constructs of both plating systems were shown to lower the bone strains around the distal fixation screws (up to 24.8% reduction in maximum principal strain and 26.6% reduction in minimum principal strain) and in the distal metaphyseal shaft of the femur (up to 15.9% and 25.7% reductions in maximum and minimum principal strains, respectively), where secondary bone fractures have been typically reported. In the distal diaphyseal and metaphyseal shaft of femur, FE models of the condyle-spanning constructs were shown to increase the local compressive stiffness (up to 152.9% increases under simulated gait-loading) and decrease the transfer of compressive load (37.1% decreases under simulated gait-loading), which may be indicative of the lowered risks of bone damage.


Assuntos
Fraturas do Fêmur , Fêmur , Placas Ósseas , Fraturas do Fêmur/cirurgia , Fêmur/cirurgia , Fixação Interna de Fraturas , Humanos , Extremidade Inferior
14.
Comput Biol Med ; 139: 104945, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34678483

RESUMO

Kinematic tracking of healthy joints in radiography sequences is frequently performed by maximizing similarities between computed perspective projections of 3D computer models and corresponding objects' appearances in radiographic images. Significant human effort associated with manual tracking presents a major bottleneck in biomechanics research methods and limits the scale of target applications. The current work introduces a method for fully-automatic tracking of tibiofemoral and patellofemoral kinematics in stereo-radiography sequences for subjects performing dynamic activities. The proposed method involves the application of convolutional neural networks for annotating radiographs and a multi-stage optimization pipeline for estimating bone pose based on information provided by neural net predictions. Predicted kinematics are evaluated by comparing against manually-tracked trends across 20 distinct trials. Median absolute differences below 1.5 millimeters or degrees for 6 tibiofemoral and 3 patellofemoral degrees of freedom demonstrate the utility of our approach, which improves upon previous semi-automatic methods by enabling end-to-end automation. Implementation of a fully-automatic pipeline for kinematic tracking will benefit evaluation of human movement by enabling large-scale studies of healthy knee kinematics.


Assuntos
Imageamento Tridimensional , Articulação do Joelho , Fenômenos Biomecânicos , Humanos , Articulação do Joelho/diagnóstico por imagem , Redes Neurais de Computação , Radiografia
15.
J Biomech ; 123: 110439, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34004394

RESUMO

Joint contact and muscle forces estimated with musculoskeletal modeling techniques offer useful metrics describing movement quality that benefit multiple research and clinical applications. The expensive processing of laboratory data associated with generating these outputs presents challenges to researchers and clinicians, including significant time and expertise requirements that limit the number of subjects typically evaluated. The objective of the current study was to develop and compare machine learning techniques for rapid, data-driven estimation of musculoskeletal metrics from derived gait lab data. OpenSim estimates of patient joint and muscle forces during activities of daily living were simulated using laboratory data from 70 total knee replacement patients and used to develop 4 different machine learning algorithms. Trained machine learning models predicted both trend and magnitude of estimated joint contact (mean correlation coefficients ranging from 0.93 to 0.94 during gait) and muscle forces (mean correlation coefficients ranging from 0.83 to 0.91 during gait) based on anthropometrics, ground reaction forces, and joint angle data. Patient mechanics were accurately predicted by recurrent neural networks, even after removing dependence on key subsets of predictor features. The ability to quickly estimate patient mechanics from derived measurements of movement has the potential to broaden the impact of musculoskeletal modeling by enabling faster assessment in both clinical and research settings.


Assuntos
Atividades Cotidianas , Modelos Biológicos , Fenômenos Biomecânicos , Marcha , Humanos , Articulação do Joelho , Extremidade Inferior , Aprendizado de Máquina , Músculo Esquelético , Músculos
16.
J Biomech ; 120: 110363, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33725522

RESUMO

Femoral strain is indicative of the potential for bone remodeling (strain energy density, SED) and periprosthetic femoral fracture (magnitude of principal strains) after total hip arthroplasty (THA). Previous modeling studies have evaluated femoral strains in THA-implanted femurs under gait loads including both physiological hip contact force and femoral muscle forces. However, experimental replication of the complex muscle forces during activities of daily living (ADLs) is difficult for in vitro assessment of femoral implant or fixation hardware. Alternatively, cadaveric tests using simplified loading configurations have been developed to assess post-THA bone mechanics, although no current studies have demonstrated simplified loading configurations used in mechanical tests may simulate the physiological femoral strains under ADL loads. Using an optimization approach integrated with finite element analysis, this study developed axial compression and combined axial compression and torque testing configurations for three common ADLs (gait, stair-descent and sit-to-stand) via matching the SED profile of the femur in THA-implanted models of three specimens. The optimized simplified-loading models showed good agreement in predicting bone remodeling stimuli (post-THA change in SED per unit mass) and fatigue regions as compared with the ADL-loading models, as well as other modeling and clinical studies. The optimized simplified test configurations can provide a physiological-loading based pre-clinical platform for the evaluation of implant/fixation devices of the femur.


Assuntos
Atividades Cotidianas , Fêmur , Fenômenos Biomecânicos , Análise de Elementos Finitos , Humanos , Estresse Mecânico , Torque
17.
Knee ; 29: 86-94, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33582595

RESUMO

BACKGROUND: The objective of this study was to discover whether notable differences in mobile and fixed-bearing kinematics occur during activity that promotes tibial rotation, and to compare these results with normal healthy kinematics. We hypothesized that rotating-platform knee replacements would exhibit greater rotation of the tibia relative to the fixed-bearing knee replacements. MATERIALS AND METHODS: The in vivo motion of the tibia relative to the femur was measured in subjects with posterior stabilized fixed-bearing (FB) and rotating-platform (RP) total knee arthroplasties using a high-speed stereo radiography system during a lunge and gait with a change in direction (pivot). RESULTS: The in vivo internal/external (IE) rotation and anterior/posterior translation of the tibia relative to the femur was similar between mobile and fixed-bearing total knee prostheses during two activities of daily living that included an activity that challenged tibial IE rotation. Measurements of IE rotation in participants with RP had higher variability and significantly greater range between maximum internal and external rotation compared with FB participants. The greater amount of variability of RP was not unlike the healthy knee. CONCLUSION: The pattern of IE rotation and AP translation for both RP and FB designs were similar to healthy kinematics but with less IE rotation. The RP implants more closely replicated the asymmetrical posterior condylar translation and range of IE rotation of the healthy knee during activity that challenged tibial IE rotation.


Assuntos
Artroplastia do Joelho , Análise da Marcha , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/fisiologia , Prótese do Joelho , Rotação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Desenho de Prótese , Radiografia
18.
Med Eng Phys ; 88: 69-77, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33485516

RESUMO

Bone remodeling after total knee arthroplasty is regulated by the changes in strain energy density (SED), however, the critical parameters influencing post-operative SED distributions are not fully understood. This study aimed to investigate the impact of surgical alignment, tray material properties, posterior cruciate ligament (PCL) balance, tray posterior slope, and patient anatomy on SED distributions in the proximal tibia. Finite element models of two tibiae (different anatomy) with configurations of two implant materials, two surgical alignments, two posterior slopes, and two PCL conditions were developed. The models were tested under the peak loading conditions during gait, deep knee bending, and stair descent. For each configuration, the contact forces and locations and soft-tissue loads of interest were taken into consideration. SED in the proximal tibia was predicted and the changes in strain distributions were compared for each of the factors studied. Tibial anatomy had the most impact on the proximal bone SED distributions, followed by PCL balancing, surgical alignment, and posterior slope. In addition, the thickness of the remaining cortical wall after implantation was also a significant consideration when evaluating tibial anatomy. The resulting SED changes for alignment, posterior slope, and PCL factors were mainly due to the differences in joint and soft-tissue loading conditions. A lower modulus tray material did result in changes in the post-operative strain state, however, these were almost negligible compared to that seen for the other factors.


Assuntos
Artroplastia do Joelho , Ligamento Cruzado Posterior , Fenômenos Biomecânicos , Humanos , Articulação do Joelho/cirurgia , Ligamento Cruzado Posterior/cirurgia , Amplitude de Movimento Articular , Tíbia/cirurgia
19.
Int J Numer Method Biomed Eng ; 36(11): e3396, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32812382

RESUMO

Musculoskeletal modeling allows researchers insight into joint mechanics which might not otherwise be obtainable through in vivo or in vitro studies. Common musculoskeletal modeling techniques involve rigid body dynamics software which often employ simplified joint representations. These representations have proven useful but are limited in performing single-framework deformable analyzes in structures of interest. Musculoskeletal finite element (MSFE) analysis allows for representation of structures in sufficient detail to obtain accurate solutions of the internal stresses and strains including complex contact conditions and material representations. Studies which performed muscle force optimization directly in a finite element framework were often limited in complexity to minimize computational time. Recent advances in computational efficiency and control schemes for muscle force prediction have made these solutions more practical. Yet, the formulation of subject-specific simulations remains a challenging problem. The objectives of this work were to develop an open-source computational framework to build and run simulations which (a) scale the size of MSFE models and efficiently estimate (b) joint kinematics and (c) muscle forces from human motion data collected in a typical gait laboratory. A computational framework was built using MATLAB and Python to interface with model input and output files. The software uses laboratory marker data to scale model segment lengths and estimate joint kinematics. Concurrent muscle force and tissue strain estimations are performed based on the estimated kinematics and ground reaction forces. This software will improve the usability and consistency of single-framework MSFE simulations. Both software and template model are made freely available on SimTK.Novelty Statement Single framework musculoskeletal modeling directly in a finite element environment for muscle force estimation and tissue strain analysis. Open dissemination of unilateral musculoskeletal finite element model and software used in manuscript.


Assuntos
Laboratórios , Modelos Biológicos , Fenômenos Biomecânicos , Análise de Elementos Finitos , Marcha , Humanos , Articulação do Joelho
20.
Biomech Model Mechanobiol ; 19(4): 1297-1307, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32562094

RESUMO

Instability and dislocation remain leading indications for revision of total hip arthroplasty (THA). Many studies have addressed the links between implant design and dislocation; however, an understanding of the impact of alignment and kinematic variability on constraint of modern THA constructs to provide joint stability is needed. The objective of this study is to provide objective data to be considered in the treatment algorithm to protect against joint instability. Joint contact and muscle forces were evaluated using musculoskeletal models of THA patients performing activities consistent with posterior and anterior dislocation. Position and joint loads were transferred to a finite element simulation with an experimentally calibrated hip capsule representation, where they were kinematically extrapolated until impingement and eventual dislocation. Cup anteversion and inclination were varied according to clinical measurements, and variation in imposed kinematics was included. The resistive moment provided by the contact force and joint capsule, and overall dislocation rate (dislocations/total simulations) were determined with neutral and lipped acetabular liners. Use of a lipped liner did increase the resistive moment in posterior dislocation, by an average of 5.2 Nm, and the flexion angle at dislocation by 1.4° compared to a neutral liner. There was a reduction in similar magnitude in resistance to anterior dislocation. Increased cup anteversion and inclination, hip abduction and internal rotation all reduced the occurrence of posterior dislocation but increased anterior dislocation. A quantitative understanding of tradeoffs in the dislocation risk inherent to THA construct options is valuable in supporting surgical decision making.


Assuntos
Artroplastia de Quadril , Luxação do Quadril/fisiopatologia , Prótese de Quadril , Acetábulo/cirurgia , Fenômenos Biomecânicos , Simulação por Computador , Análise de Elementos Finitos , Humanos , Modelos Biológicos , Músculos/fisiopatologia , Polietileno/química , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA