Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
NPJ Parkinsons Dis ; 10(1): 69, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521776

RESUMO

Clinical, cognitive, and atrophy characteristics depending on sex have been previously reported in Parkinson's disease (PD). However, though sex differences in cortical gray matter measures in early drug naïve patients have been described, little is known about differences in cortical thickness (CTh) as the disease advances. Our multi-site sample comprised 211 non-demented PD patients (64.45% males; mean age 65.58 ± 8.44 years old; mean disease duration 6.42 ± 5.11 years) and 86 healthy controls (50% males; mean age 65.49 ± 9.33 years old) with available T1-weighted 3 T MRI data from four international research centers. Sex differences in regional mean CTh estimations were analyzed using generalized linear models. The relation of CTh in regions showing sex differences with age, disease duration, and age of onset was examined through multiple linear regression. PD males showed thinner cortex than PD females in six frontal (bilateral caudal middle frontal, bilateral superior frontal, left precentral and right pars orbitalis), three parietal (bilateral inferior parietal and left supramarginal), and one limbic region (right posterior cingulate). In PD males, lower CTh values in nine out of ten regions were associated with longer disease duration and older age, whereas in PD females, lower CTh was associated with older age but with longer disease duration only in one region. Overall, male patients show a more widespread pattern of reduced CTh compared with female patients. Disease duration seems more relevant to explain reduced CTh in male patients, suggesting worse prognostic over time. Further studies should explore sex-specific cortical atrophy trajectories using large longitudinal multi-site data.

2.
NPJ Parkinsons Dis ; 8(1): 79, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35732679

RESUMO

The prevailing network perspective of Parkinson's disease (PD) emerges not least from the ascending neuropathology traceable in histological studies. However, whether longitudinal in vivo correlates of network degeneration in PD can be observed remains unresolved. Here, we applied a trimodal imaging protocol combining 18F-fluorodeoxyglucose (FDG)- and 18F-fluoro-L-Dopa- (FDOPA)-PET with resting-state functional MRI to assess longitudinal changes in midbrain metabolism, striatal dopamine depletion and striatocortical dysconnectivity in 17 well-characterized PD patients. Whole-brain (un)paired-t-tests with focus on midbrain or striatum were performed between visits and in relation to 14 healthy controls (HC) in PET modalities. Resulting clusters of FDOPA-PET comparisons provided volumes for seed-based functional connectivity (FC) analyses between visits and in relation to HC. FDG metabolism in the left midbrain decreased compared to baseline along with caudatal FDOPA-uptake. This caudate cluster exhibited a longitudinal FC decrease to sensorimotor and frontal areas. Compared to healthy subjects, dopamine-depleted putamina indicated stronger decline in striatocortical FC at follow-up with respect to baseline. Increasing nigrostriatal deficits and striatocortical decoupling were associated with deterioration in motor scores between visits in repeated-measures correlations. In summary, our results demonstrate the feasibility of in-vivo tracking of progressive network degeneration using a multimodal imaging approach. Specifically, our data suggest advancing striatal and widespread striatocortical dysfunction via an anterior-posterior gradient originating from a hypometabolic midbrain cluster within a well-characterized and only mild to moderately affected PD cohort during a relatively short period.

3.
Hum Brain Mapp ; 43(10): 3130-3142, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35305545

RESUMO

Multi-site MRI datasets are crucial for big data research. However, neuroimaging studies must face the batch effect. Here, we propose an approach that uses the predictive probabilities provided by Gaussian processes (GPs) to harmonize clinical-based studies. A multi-site dataset of 216 Parkinson's disease (PD) patients and 87 healthy subjects (HS) was used. We performed a site GP classification using MRI data. The outcomes estimated from this classification, redefined like Weighted HARMonization PArameters (WHARMPA), were used as regressors in two different clinical studies: A PD versus HS machine learning classification using GP, and a VBM comparison (FWE-p < .05, k = 100). Same studies were also conducted using conventional Boolean site covariates, and without information about site belonging. The results from site GP classification provided high scores, balanced accuracy (BAC) was 98.39% for grey matter images. PD versus HS classification performed better when the WHARMPA were used to harmonize (BAC = 78.60%; AUC = 0.90) than when using the Boolean site information (BAC = 56.31%; AUC = 0.71) and without it (BAC = 57.22%; AUC = 0.73). The VBM analysis harmonized using WHARMPA provided larger and more statistically robust clusters in regions previously reported in PD than when the Boolean site covariates or no corrections were added to the model. In conclusion, WHARMPA might encode global site-effects quantitatively and allow the harmonization of data. This method is user-friendly and provides a powerful solution, without complex implementations, to clean the analyses by removing variability associated with the differences between sites.


Assuntos
Doença de Parkinson , Substância Cinzenta , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Doença de Parkinson/diagnóstico por imagem
4.
Neuroimage Clin ; 32: 102899, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34911202

RESUMO

Freezing of gait is a common phenomenon of advanced Parkinson's disease. Besides locomotor function per se, a role of cognitive deficits has been suggested. Limited evidence of associated dopaminergic deficits points to caudatal denervation. Further, altered functional connectivity within resting-state networks with importance for cognitive functions has been described in freezers. A potential pathophysiological link between both imaging findings has not yet been addressed. The current study sought to investigate the association between dopaminergic pathway dysintegrity and functional dysconnectivity in relation to FOG severity and cognitive performance in a well-characterized PD cohort undergoing high-resolution 6-[18F]fluoro-L-Dopa PET and functional MRI. The freezing of gait questionnaire was applied to categorize patients (n = 59) into freezers and non-freezers. A voxel-wise group comparison of 6-[18F]fluoro-L-Dopa PET scans with focus on striatum was performed between both well-matched and neuropsychologically characterized patient groups. Seed-to-voxel resting-state functional connectivity maps of the resulting dopamine depleted structures and dopaminergic midbrain regions were created and compared between both groups. For a direct between-group comparison of dopaminergic pathway integrity, a molecular connectivity approach was conducted on 6-[18F]fluoro-L-Dopa scans. With respect to striatal regions, freezers showed significant dopaminergic deficits in the left caudate nucleus, which exhibited altered functional connectivity with regions of the visual network. Regarding midbrain structures, the bilateral ventral tegmental area showed altered functional coupling to regions of the default mode network. An explorative examination of the integrity of dopaminergic pathways by molecular connectivity analysis revealed freezing-associated impairments in mesolimbic and mesocortical pathways. This study represents the first characterization of a link between dopaminergic pathway dysintegrity and altered functional connectivity in Parkinson's disease with freezing of gait and hints at a specific involvement of striatocortical and mesocorticolimbic pathways in freezers.


Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Dopamina , Marcha , Transtornos Neurológicos da Marcha/diagnóstico por imagem , Transtornos Neurológicos da Marcha/etiologia , Humanos , Imageamento por Ressonância Magnética , Vias Neurais/diagnóstico por imagem , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem
5.
Hum Brain Mapp ; 42(8): 2623-2641, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33638213

RESUMO

Involvement of the default mode network (DMN) in cognitive symptoms of Parkinson's disease (PD) has been reported by resting-state functional MRI (rsfMRI) studies. However, the relation to metabolic measures obtained by [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET) is largely unknown. We applied multimodal resting-state network analysis to clarify the association between intrinsic metabolic and functional connectivity abnormalities within the DMN and their significance for cognitive symptoms in PD. PD patients were classified into normal cognition (n = 36) and mild cognitive impairment (MCI; n = 12). The DMN was identified by applying an independent component analysis to FDG-PET and rsfMRI data of a matched subset (16 controls and 16 PD patients) of the total cohort. Besides metabolic activity, metabolic and functional connectivity within the DMN were compared between the patients' groups and healthy controls (n = 16). Glucose metabolism was significantly reduced in all DMN nodes in both patient groups compared to controls, with the lowest uptake in PD-MCI (p < .05). Increased metabolic and functional connectivity along fronto-parietal connections was identified in PD-MCI patients compared to controls and unimpaired patients. Functional connectivity negatively correlated with cognitive composite z-scores in patients (r = -.43, p = .005). The current study clarifies the commonalities of metabolic and hemodynamic measures of brain network activity and their individual significance for cognitive symptoms in PD, highlighting the added value of multimodal resting-state network approaches for identifying prospective biomarkers.


Assuntos
Córtex Cerebral , Disfunção Cognitiva , Conectoma , Rede de Modo Padrão , Doença de Parkinson , Idoso , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Rede de Modo Padrão/diagnóstico por imagem , Rede de Modo Padrão/metabolismo , Rede de Modo Padrão/fisiopatologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Imagem Multimodal , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Tomografia por Emissão de Pósitrons
6.
Mov Disord ; 35(12): 2201-2210, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32853481

RESUMO

BACKGROUND: Alterations in the GBA gene (NM_000157.3) are the most important genetic risk factor for Parkinson's disease (PD). Biallelic GBA mutations cause the lysosomal storage disorder Gaucher's disease. The GBA variants p.E365K and p.T408M are associated with PD but not with Gaucher's disease. The pathophysiological role of these variants needs to be further explored. OBJECTIVE: This study analyzed clinical, neuropsychological, metabolic, and neuroimaging phenotypes of patients with PD carrying the GBA variants p.E365K and p.T408M. METHODS: GBA was sequenced in 56 patients with mid-stage PD. Carriers of GBA variants were compared with noncarriers regarding clinical history and symptoms, neuropsychological features, metabolomics, and multimodal neuroimaging. Blood plasma gas chromatography coupled to mass spectrometry, 6-[18 F]fluoro-L-Dopa positron emission tomography (PET), [18 F]fluorodeoxyglucose PET, and resting-state functional magnetic resonance imaging were performed. RESULTS: Sequence analysis detected 13 heterozygous GBA variant carriers (7 with p.E365K, 6 with p.T408M). One patient carried a GBA mutation (p.N409S) and was excluded. Clinical history and symptoms were not significantly different between groups. Global cognitive performance was lower in variant carriers. Metabolomic group differences were suggestive of more severe PD-related alterations in carriers versus noncarriers. Both PET scans showed signs of a more advanced disease; [18 F]fluorodeoxyglucose PET and functional magnetic resonance imaging showed similarities with Lewy body dementia and PD dementia in carriers. CONCLUSIONS: This is the first study to comprehensively assess (neuro-)biological phenotypes of GBA variants in PD. Metabolomics and neuroimaging detected more significant group differences than clinical and behavioral evaluation. These alterations could be promising to monitor effects of disease-modifying treatments targeting glucocerebrosidase metabolism. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Glucosilceramidase/genética , Humanos , Metabolômica , Mutação/genética , Neuroimagem , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/genética , Fenótipo
7.
Brain ; 143(3): 944-959, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32057084

RESUMO

The spreading hypothesis of neurodegeneration assumes an expansion of neural pathologies along existing neural pathways. Multimodal neuroimaging studies have demonstrated distinct topographic patterns of cerebral pathologies in neurodegeneration. For Parkinson's disease the hypothesis so far rests largely on histopathological evidence of α-synuclein spreading in a characteristic pattern and progressive nigrostriatal dopamine depletion. Functional consequences of nigrostriatal dysfunction on cortical activity remain to be elucidated. Our goal was to investigate multimodal imaging correlates of degenerative processes in Parkinson's disease by assessing dopamine depletion and its potential effect on striatocortical connectivity networks and cortical metabolism in relation to parkinsonian symptoms. We combined 18F-DOPA-PET, 18F-fluorodeoxyglucose (FDG)-PET and resting state functional MRI to multimodally characterize network alterations in Parkinson's disease. Forty-two patients with mild-to-moderate stage Parkinson's disease and 14 age-matched healthy control subjects underwent a multimodal imaging protocol and comprehensive clinical examination. A voxel-wise group comparison of 18F-DOPA uptake identified the exact location and extent of putaminal dopamine depletion in patients. Resulting clusters were defined as seeds for a seed-to-voxel functional connectivity analysis. 18F-FDG metabolism was compared between groups at a whole-brain level and uptake values were extracted from regions with reduced putaminal connectivity. To unravel associations between dopaminergic activity, striatocortical connectivity, glucose metabolism and symptom severity, correlations between normalized uptake values, seed-to-cluster ß-values and clinical parameters were tested while controlling for age and dopaminergic medication. Aside from cortical hypometabolism, 18F-FDG-PET data for the first time revealed a hypometabolic midbrain cluster in patients with Parkinson's disease that comprised caudal parts of the bilateral substantia nigra pars compacta. Putaminal dopamine synthesis capacity was significantly reduced in the bilateral posterior putamen and correlated with ipsilateral nigral 18F-FDG uptake. Resting state functional MRI data indicated significantly reduced functional connectivity between the dopamine depleted putaminal seed and cortical areas primarily belonging to the sensorimotor network in patients with Parkinson's disease. In the inferior parietal cortex, hypoconnectivity in patients was significantly correlated with lower metabolism (left P = 0.021, right P = 0.018). Of note, unilateral network alterations quantified with different modalities corresponded with contralateral motor impairments. In conclusion, our results support the hypothesis that degeneration of nigrostriatal fibres functionally impairs distinct striatocortical connections, disturbing the efficient interplay between motor processing areas and impairing motor control in patients with Parkinson's disease. The present study is the first to reveal trimodal evidence for network-dependent degeneration in Parkinson's disease by outlining the impact of functional nigrostriatal pathway impairment on striatocortical functional connectivity networks and cortical metabolism.


Assuntos
Córtex Cerebral/fisiopatologia , Corpo Estriado/fisiopatologia , Doença de Parkinson/fisiopatologia , Substância Negra/fisiopatologia , Idoso , Estudos de Casos e Controles , Córtex Cerebral/metabolismo , Corpo Estriado/metabolismo , Di-Hidroxifenilalanina/análogos & derivados , Di-Hidroxifenilalanina/metabolismo , Dopamina/metabolismo , Feminino , Fluordesoxiglucose F18/metabolismo , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Imagem Multimodal , Vias Neurais/fisiopatologia , Doença de Parkinson/metabolismo , Tomografia por Emissão de Pósitrons , Putamen/fisiopatologia , Substância Negra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA