Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
EFORT Open Rev ; 8(7): 499-508, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37395678

RESUMO

The objectives of the 1st EFORT European Consensus on 'Medical and Scientific Research Requirements for the Clinical Introduction of Artificial Joint Arthroplasty Devices' were foremost to focus on patient safety by establishing performance requirements for medical devices. The 1st EFORT European Consensus applied an a priori-defined, modified Delphi methodology to produce unbiased, high-quality recommendation statements, confirmed by consensus voting of a European expert panel. Intended key outcomes are practical guidelines justified by the current stage of knowledge and based on a broad European Expert Consensus, to maintain innovation and optimisation of orthopaedic devices within the boundaries of MDR 2017/745. Twenty-one main research areas of relevance were defined relying on input from the EFORT IPSI WG1 'Introduction of Innovation' recommendations and a related survey. A modified Delphi approach with a preparatory literature review and work in small groups were used to prepare answers to the research questions in the form of 32 draft Consensus statements. A Consensus Conference in a hybrid format, on-site in the Carl Gustav Carus University of Dresden was organised to further refine the draft statements and define consensus within the complete group of participants by final voting, intended to further quantify expert opinion knowledge. The modified Delphi approach provides practical guidelines for hands-on orientation for orthopaedic surgeons, research institutes and laboratories, orthopaedic device manufacturers, patient representatives, Notified Bodies, National Institutes and authorities. For the first time, initiated by the EFORT IPSI (WG1 'Introduction of Innovation'), knowledge of all related stakeholders was combined in the 1st EFORT European Consensus to develop guidelines and result in a comprehensive set of recommendations.

2.
EFORT Open Rev ; 8(7): 509-521, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37395720

RESUMO

With the implementation of the new MDR 2017/745 by the European Parliament, more robust clinical and pre-clinical data will be required due to a more stringent approval process. The EFORT Implant and Patient Safety Initiative WG1 'Introduction of Innovation', combined knowledge of orthopaedic surgeons, research institutes, orthopaedic device manufacturers, patient representatives and regulatory authorities to develop a comprehensive set of recommendations for the introduction of innovations in joint arthroplasty within the boundaries of MDR 2017/745. Recommendations have been developed to address key questions about pre-clinical and clinical requirements for the introduction of new implants and implant-related instrumentation with the participation of a steering group, invited by the EFORT Board in dialogue with representatives from European National Societies and Speciality Societies. Different degrees of novelty and innovation were described and agreed on in relation to when surgeons can start, using implants and implant-related instrumentation routinely. Before any clinical phase of a new implant, following the pre-market clinical investigation or the equivalent device PMCF pathway, it is a common understanding that all appropriate pre-clinical testing (regulatory mandatory and evident state of the art) - which has to be considered for a specific device - has been successfully completed. Once manufacturers receive the CE mark for a medical device, it can be used in patients routinely when a clinical investigation has been conducted to demonstrate the conformity of devices according to MDR Article 62 or full equivalence for the technical, biological and clinical characteristics has been demonstrated (MDR, Annex XIV, Part A, 3.) and a PMCF study has been initiated.

3.
J Arthroplasty ; 37(11): 2272-2281, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35588902

RESUMO

BACKGROUND: Early total knee arthroplasty failures continue to surface in the literature. Cementation technique and implant design are two of the most important scenarios that can affect implant survivorship. Our objectives were to develop a more suitable preclinical test to evaluate the endurance of the implant-cement-bone interface under anterior shear and internal-external (I/E) torsional shear testing condition in a biomechanical sawbones. METHODS: Implants tested included the AS VEGA System PS and the AS Columbus CR/PS (Aesculap AG, Germany), with zirconium nitride (ZrN) coating. Tibial implants were evaluated under anterior shear and I/E torsional shear conditions with 6 samples in 4 test groups. For the evaluation of the I/E torsional shear endurance behavior, a test setup was created allowing for clinically relevant I/E rotation with simultaneous high axial/tibio-femoral load. The test was performed with an I/E displacement of ±17.2°, for 1 million cycles with an axial preload of 3,000 N. RESULTS: After the anterior shear test an implant-cement-bone fixation strength for the AS VEGA System tibial tray of 2,674 ± 754 N and for the AS Columbus CR/PS tibial tray of 2,177 ± 429 N was determined (P = .191). After I/E rotational shear testing an implant-cement-bone fixation strength for the AS VEGA System PS tray of 2,561 ± 519 N and for the AS Columbus CR/PS tray of 2,824 ± 515 N was resulted (P = .39). CONCLUSION: Both methods had varying degrees of failure modes from debonding to failure of the sawbones foam. These two intense biomechanical loading tests are more strenuous and more representative of clinical activity.


Assuntos
Artroplastia do Joelho , Prótese do Joelho , Artroplastia do Joelho/métodos , Fenômenos Biomecânicos , Cimentos Ósseos , Cimentação/métodos , Fêmur/cirurgia , Humanos , Tíbia/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA