Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Med ; 13(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38892739

RESUMO

Background: As adipose tissue-derived mesenchymal stem cells are becoming the tool of choice for many clinical applications; standardized cryopreservation protocols are necessary to deliver high-quality samples. For this purpose, the cryopreservation and thawing of native adipose tissue under GMP conditions could represent an extremely useful and powerful tool for the direct reinfusion of the tissue, and consequently, of its stromal vascular fraction. Methods: In this study, 19 samples of adipose tissue were cryopreserved and characterized before and after storage in liquid nitrogen vapors. Of these 19 samples, 14 were processed in research and 5 in a GMP-compliant environment. Storage with and without cryopreservation medium was also evaluated. After one week to three months of storage, samples were thawed, washed, enzymatically digested, and characterized with flow cytometry. Results: The results show that there is a loss of nearly 50% of total nucleated cells during the cryopreservation/thawing process. Non-GMP and GMP samples are comparable for all parameters analyzed. This study also allowed us to exclude the cryopreservation of adipose tissue without any cryopreservation medium. Conclusions: The data shown in this work are consistent with the idea that native adipose tissue, if properly processed and controlled, could be a useful source of cells for regenerative medicine, keeping in mind that there is a clear difference in the quality between fresh and thawed samples.

2.
Biomedicines ; 11(9)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37760974

RESUMO

Stromal vascular fraction (SVF) cells, together with adipose-derived mesenchymal stem cells, are becoming the tool of choice for many clinical applications. Currently, nearly 200 clinical trials are running worldwide to prove the efficacy of this cell type in treating many diseases and pathological conditions. To reach the goals of cell therapies and produce ATMPs as drugs for regenerative medicine, it is necessary to properly standardize GMP processes and, thus, collection methods, transportation strategies, extraction protocols, and characterization procedures, without forgetting that all the tissues of the human body are characterized by a wide inter-individual variability which is genetically determined and acquired during life. Here, we compare 302 samples processed under GMP rules to exclude the influence of the operator and of the anatomical site of collection. The influence of variability in the ages and genders of patients, along with laboratory parameters such as total cell number, cell viability, stem cell number, and other stromal vascular fraction cell subpopulations, has been compared. The results show that when the laboratory protocol is standardized, the variability of quantifiable cell parameters is widely statistically non-significant, meaning that we can take a further step toward standardized advanced cell therapy products.

3.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36293525

RESUMO

Advanced cell therapy medicinal products (ATMP) are at the forefront of a new range of biopharmaceuticals. The use of ATMP has evolved and increased in the last decades, representing a new approach to treating diseases that are not effectively managed with conventional treatments. The standard worldwide recognized for drug production is the Good Manufacturing Practices (GMP), widely used in the pharma production of synthesized drugs but applying also to ATMP. GMP guidelines are worldwide recognized standards to manufacture medicinal products to guarantee high quality, safety, and efficacy. In this report, we describe the pre-clinical and the GMP upgrade of peripheral blood mononuclear cell (PBMC) preparation, starting from peripheral blood and ending up with a GMP-grade clinical product ready to be used in patients with critical limb ischemia (CLI). We also evaluated production in hypoxic conditions to increase PBMC functional activity and angiogenic potential. Furthermore, we extensively analyzed the storage and transport conditions of the final product as required by the regulatory body for ATMPs. Altogether, results suggest that the whole manufacturing process can be performed for clinical application. Peripheral blood collected by a physician should be transported at room temperature, and PBMCs should be isolated in a clean room within 8 h of venipuncture. Frozen cells can be stored in nitrogen vapors and thawed for up to 12 months. PBMCs resuspended in 5% human albumin solution should be stored and transported at 4 °C before injection in patients within 24 h to thawing. Hypoxic conditioning of PBMCs should be implemented for clinical application, as it showed a significant enhancement of PBMC functional activity, in particular with increased adhesion, migration, and oxidative stress resistance. We demonstrated the feasibility and the quality of a GMP-enriched suspension of monocytes as an ATMP, tested in a clean room facility for all aspects related to production in respect of all the GMP criteria that allow its use as an ATMP. We think that these results could ease the way to the clinical application of ATMPs.


Assuntos
Produtos Biológicos , Medicamentos Sintéticos , Humanos , Leucócitos Mononucleares , Monócitos , Isquemia Crônica Crítica de Membro , Albumina Sérica Humana , Nitrogênio
4.
Stem Cell Res Ther ; 12(1): 373, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34210363

RESUMO

BACKGROUND: Even though the manufacturing processes of the stromal vascular fraction for clinical use are performed in compliance with the good manufacturing practices applying to advanced therapy medicinal products, specifications related to stromal vascular fraction quality remain poorly defined. We analyzed stromal vascular fraction clinical batches from two independent good manufacturing practices-compliant manufacturing facilities, the Swiss Stem Cell Foundation (SSCF) and Marseille University Hospitals (AP-HM), with the goal of defining appropriate and harmonized release acceptance criteria. METHODS: This retrospective analysis reviewed the biological characteristics of 364 batches of clinical-grade stromal vascular fraction. Collected data included cell viability, recovery yield, cell subset distribution of stromal vascular fraction, and microbiological quality. RESULTS: Stromal vascular fraction from SSCF cohort demonstrated a higher viability (89.33% ± 4.30%) and recovery yield (2.54 × 105 ± 1.22 × 105 viable nucleated cells (VNCs) per mL of adipose tissue) than stromal vascular fraction from AP-HM (84.20% ± 5.96% and 2.25 × 105 ± 1.11 × 105 VNCs per mL). AP-HM batches were significantly less contaminated (95.71% of sterile batches versus 74.15% for SSCF batches). The cell subset distribution was significantly different (higher proportion of endothelial cells and lower proportion of leukocytes and pericytes in SSCF cohort). CONCLUSIONS: Both centers agreed that a good manufacturing practices-compliant stromal vascular fraction batch should exert a viability equal or superior to 80%, a minimum recovery yield of 1.50 × 105 VNCs per mL of adipose tissue, a proportion of adipose-derived stromal cells at least equal to 20%, and a proportion of leukocytes under 50%. In addition, a multiparameter gating strategy for stromal vascular fraction analysis is proposed.


Assuntos
Tecido Adiposo , Células Endoteliais , Sobrevivência Celular , Estudos Retrospectivos , Células Estromais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA