Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
ACS Nano ; 17(11): 10608-10616, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37224165

RESUMO

The magnetic properties of transition-metal ions are generally described by the atomic spins of the ions and their exchange coupling. The orbital moment, usually largely quenched due the ligand field, is then seen as a perturbation. In such a scheme, S = 1/2 ions are predicted to be isotropic. We investigate a Co(II) complex with two antiferromagnetically coupled 1/2 spins on Au(111) using low-temperature scanning tunneling microscopy, X-ray magnetic circular dichroism, and density functional theory. We find that each of the Co ions has an orbital moment comparable to that of the spin, leading to magnetic anisotropy, with the spins preferentially oriented along the Co-Co axis. The orbital moment and the associated magnetic anisotropy is tuned by varying the electronic coupling of the molecule to the substrate and the microscope tip. These findings show the need to consider the orbital moment even in systems with strong ligand fields. As a consequence, the description of S = 1/2 ions becomes strongly modified, which have important consequences for these prototypical systems for quantum operations.

2.
ACS Nano ; 16(7): 11182-11193, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35770912

RESUMO

We report on the magnetic properties of Dy atoms adsorbed on the (001) surface of SrTiO3. X-ray magnetic circular dichroism reveals slow relaxation of the Dy magnetization on a time scale of about 800 s at 2.5 K, unusually associated with an easy-plane magnetic anisotropy. We attribute these properties to Dy atoms occupying hollow adsorption sites on the TiO2-terminated surface. Conversely, Ho atoms adsorbed on the same surface show paramagnetic behavior down to 2.5 K. With the help of atomic multiplet simulations and first-principles calculations, we establish that Dy populates also the top-O and bridge sites on the coexisting SrO-terminated surface. A simple magnetization relaxation model predicts these two sites to have an even longer magnetization lifetime than the hollow site. Moreover, the adsorption of Dy on the insulating SrTiO3 crystal leads, regardless of the surface termination, to the formation of a spin-polarized two-dimensional electron gas of Ti 3dxy character, together with an antiferromagnetic Dy-Ti coupling. Our findings support the feasibility of tuning the magnetic properties of the rare-earth atoms by acting on the substrate electronic gas with electric fields.

3.
Nanomaterials (Basel) ; 12(3)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35159863

RESUMO

The magnetic properties and the atomic scale morphology of bimetallic two-dimensional nanoislands, epitaxially grown on fcc(111) metal surfaces, have been studied by means of Magneto-Optical Kerr Effect and Scanning Tunneling Microscopy. We investigate the effect on blocking temperature of one-dimensional interlines appearing in core-shell structures, of two-dimensional interfaces created by capping, and of random alloying. The islands are grown on Pt(111) and contain a Co-core, surrounded by Ag, Rh, and Pd shells, or capped by Pd. The largest effect is obtained by Pd capping, increasing the blocking temperature by a factor of three compared to pure Co islands. In addition, for Co-core Fe-shell and Co-core FexCo1-x-shell islands, self-assembled into well ordered superlattices on Au(11,12,12) vicinal surfaces, we find a strong enhancement of the blocking temperature compared to pure Co islands of the same size. These ultra-high-density (15 Tdots/in2) superlattices of CoFe nanodots, only 500 atoms in size, have blocking temperature exceeding 100 K. Our findings open new possibilities to tailor the magnetic properties of nanoislands.

4.
Nano Lett ; 21(19): 8266-8273, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34569802

RESUMO

Single atom magnets offer the possibility of magnetic information storage in the most fundamental unit of matter. Identifying the parameters that control the stability of their magnetic states is crucial to design novel quantum magnets with tailored properties. Here, we use X-ray absorption spectroscopy to show that the electronic configuration of dysprosium atoms on MgO(100) thin films can be tuned by the proximity of the metal Ag(100) substrate onto which the MgO films are grown. Increasing the MgO thickness from 2.5 to 9 monolayers induces a change in the dysprosium electronic configuration from 4f9 to 4f10. Hysteresis loops indicate long magnetic lifetimes for both configurations, however, with a different field-dependent magnetic stability. Combining these measurements with scanning tunneling microscopy, density functional theory, and multiplet calculations unveils the role of the adsorption site and charge transfer to the substrate in determining the stability of quantum states in dysprosium single atom magnets.

5.
ACS Nano ; 15(10): 16162-16171, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34546038

RESUMO

Single lanthanide atoms and molecules are promising candidates for atomic data storage and quantum logic due to the long lifetime of their magnetic quantum states. Accessing and controlling these states through electrical transport requires precise knowledge of their electronic configuration at the level of individual atomic orbitals, especially of the outer shells involved in transport. However, no experimental techniques have so far shown the required sensitivity to probe single atoms with orbital selectivity. Here we resolve the magnetism of individual orbitals in Gd and Ho single atoms on MgO/Ag(100) by combining X-ray magnetic circular dichroism with multiplet calculations and density functional theory. In contrast to the usual assumption of bulk-like occupation of the different electronic shells, we establish a charge transfer mechanism leading to an unconventional singly ionized configuration. Our work identifies the role of the valence electrons in determining the quantum level structure and spin-dependent transport properties of lanthanide-based nanomagnets.

6.
Adv Sci (Weinh) ; 6(22): 1901736, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31763154

RESUMO

The stability of magnetic information stored in surface adsorbed single-molecule magnets is of critical interest for applications in nanoscale data storage or quantum computing. The present study combines X-ray magnetic circular dichroism, density functional theory and magnetization dynamics calculations to gain deep insight into the substrate dependent relevant magnetization relaxation mechanisms. X-ray magnetic circular dichroism reveals the opening of a butterfly-shaped magnetic hysteresis of DyPc2 molecules on magnesium oxide and a closed loop on the bare silver substrate, while density functional theory shows that the molecules are only weakly adsorbed in both cases of magnesium oxide and silver. The enhanced magnetic stability of DyPc2 on the oxide film, in conjunction with previous experiments on the TbPc2 analogue, points to a general validity of the magnesium oxide induced stabilization effect. Magnetization dynamics calculations reveal that the enhanced magnetic stability of DyPc2 and TbPc2 on the oxide film is due to the suppression of two-phonon Raman relaxation processes. The results suggest that substrates with low phonon density of states are beneficial for the design of spintronics devices based on single-molecule magnets.

7.
RSC Adv ; 9(59): 34421-34429, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-35530011

RESUMO

We perform on-surface synthesis of single-ion molecular magnets on an Ag(111) surface and characterize their morphology, chemistry, and magnetism. The first molecule we synthesize is TbPc2 to enable comparison with chemically synthesized and subsequently surface adsorbed species. We demonstrate the formation of TbPc2 with a yield close to 100% and show that on-surface synthesis leads to identical magnetic and morphological properties compared to the previously studied chemically synthesized species. Moreover, exposure of the surface adsorbed TbPc2 molecules to air does not modify their magnetic and morphological properties. To demonstrate the versatility of our approach, we synthesize novel Tb double deckers using tert-butyl-substituted phthalocyanine (tbu-2H-Pc). The Tb(tbu-Pc)2 molecules exhibit magnetic hysteresis and therefore are the first purely on-surface synthesized single ion magnet.

8.
Nano Lett ; 17(12): 7177-7182, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29148799

RESUMO

We demonstrate that electrospray deposition enables the fabrication of highly periodic self-assembled arrays of Fe4H single molecule magnets on graphene/Ir(111). The energetic positions of molecular states are probed by means of scanning tunneling spectroscopy, showing pronounced long- and short-ranged spatial modulations, indicating the presence of both locally varying intermolecular as well as adsorption-site dependent molecule-substrate interactions. From the magnetic field dependence of the X-ray magnetic circular dichroism signal, we infer that the magnetic easy axis of each Fe4H molecule is oriented perpendicular to the sample surface and that after the deposition the value of the uniaxial anisotropy is identical to the one in bulk. Our findings therefore suggest that the observed interaction of the molecules with their surrounding does not modify the molecular magnetism, resulting in a two-dimensional array of molecular magnets that retain their bulk magnetic properties.

9.
ACS Nano ; 11(3): 2675-2681, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28234448

RESUMO

Iron atoms adsorbed on a Cu(111) surface and buried under polyphenyl dicarbonitrile molecules exhibit strongly spatial anisotropic Kondo features with directionally dependent Kondo temperatures and line shapes, as evidenced by scanning tunneling spectroscopy. First-principles calculations find nearly full polarization for the half-filled Fe 3dxz and 3dyz orbitals, which therefore can give rise to Kondo screening with the experimentally observed directional dependence and distinct Kondo temperatures. X-ray absorption spectroscopy and X-ray magnetic circular dichroism measurements confirm that the spin in both channels is effectively Kondo-screened. At ideal Fe coverage, these two-orbital Kondo impurities are arranged in a self-assembled honeycomb superlattice.

10.
Nano Lett ; 16(12): 7610-7615, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27779891

RESUMO

Regular arrays of single atoms with stable magnetization represent the ultimate limit of ultrahigh density storage media. Here we report a self-assembled superlattice of individual and noninteracting Dy atoms on graphene grown on Ir(111), with magnetic hysteresis up to 5.6 T and spin lifetime of 1000 s at 2.5 K. The observed magnetic stability is a consequence of the intrinsic low electron and phonon densities of graphene and the 6-fold symmetry of the adsorption site. Our array of single atom magnets has a density of 115 Tbit/inch2, defined by the periodicity of the graphene moiré pattern.

11.
Adv Mater ; 28(26): 5142, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27383020

RESUMO

In Tb(Pc)2 single-molecule magnets, where Pc is phthalocyanine, adsorbed on magnesium oxide, the fluctuations of the terbium magnetic moment are strongly suppressed in contrast to the adsorption on silver. On page 5195, J. Dreiser and co-workers investigate that the molecules are perfectly organized by self-assembly, as seen in the scanning tunnelling microscopy image (top part of the design). The molecules are probed by circularly polarized X-rays depicted as green spirals.

12.
Nano Lett ; 16(6): 3475-81, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27152738

RESUMO

We report magnetic hysteresis in Er clusters on Cu(111) starting from the size of three atoms. Combining X-ray magnetic circular dichroism, scanning tunneling microscopy, and mean-field nucleation theory, we determine the size-dependent magnetic properties of the Er clusters. Er atoms and dimers are paramagnetic, and their easy magnetization axes are oriented in-plane. In contrast, trimers and bigger clusters exhibit magnetic hysteresis at 2.5 K with a relaxation time of 2 min at 0.1 T and out-of-plane easy axis. This appearance of magnetic stability for trimers coincides with their enhanced structural stability.

13.
Adv Mater ; 28(26): 5195-9, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27159732

RESUMO

TbPc2 single-molecule magnets adsorbed on a magnesium oxide tunnel barrier exhibit record magnetic remanence, record hysteresis opening, perfect out-of-plane alignment of the magnetic easy axes, and self-assembly into a well-ordered layer.

14.
ACS Nano ; 10(2): 2887-92, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26814851

RESUMO

We have studied Er(trensal) single-ion magnets adsorbed on graphene/Ru(0001), on graphene/Ir(111), and on bare Ru(0001) by scanning tunneling microscopy and X-ray absorption spectroscopy. On graphene, the molecules self-assemble into dense and well-ordered islands with their magnetic easy axes perpendicular to the surface. In contrast, on bare Ru(0001), the molecules are disordered, exhibiting only weak directional preference of the easy magnetization axis. The perfect out-of-plane alignment of the easy axes on graphene results from the molecule-molecule interaction, which dominates over the weak adsorption on the graphene surface. Our results demonstrate that the net magnetic properties of a molecular submonolayer can be tuned using a graphene spacer layer, which is attractive for hybrid molecule-inorganic spintronic devices.

15.
ACS Nano ; 10(1): 1101-7, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26588469

RESUMO

We report on the magnetic coupling between isolated Co atoms as well as small Co islands and Ni(111) mediated by an epitaxial graphene layer. X-ray magnetic circular dichroism and scanning tunneling microscopy combined with density functional theory calculations reveal that Co atoms occupy two distinct adsorption sites, with different magnetic coupling to the underlying Ni(111) surface. We further report a transition from an antiferromagnetic to a ferromagnetic coupling with increasing Co cluster size. Our results highlight the extreme sensitivity of the exchange interaction mediated by graphene to the adsorption site and to the in-plane coordination of the magnetic atoms.

16.
Chem Commun (Camb) ; 51(65): 12958-61, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26171839

RESUMO

We report on the antiferromagnetic exchange coupling between a submonolayer of Mn(II)-phthalocyanine molecules and a ferromagnetic Eu(II)-oxide thin film. The exchange energy is larger by nearly two orders of magnitude compared to previous studies involving oxidic substrates.

17.
ACS Nano ; 9(4): 3605-16, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25856066

RESUMO

Magnetochemistry recently emerged as a promising approach to control addressable spin arrays on surfaces. Here we report on the binding, spatial ordering, and magnetic properties of Fe on a highly regular Co-tetraphenylporphyrin (Co-TPP) template and highlight how the Fe controls the magnetism of the Co centers. As evidenced by scanning tunneling microscopy (STM) single Fe atoms attach to the saddle-shape conformers site-selectively in a unique coordination environment offered through a heptamer defined by the Co-N-C-C-C-N cyclic subunit. While the magnetic moment of Co is quenched for bare Co-TPP/Ag(111), the Fe presence revives it. Our X-ray magnetic circular dichroism (XMCD) experiments, complemented by density functional theory (DFT) calculations, evidence a ferromagnetic coupling between the Fe and the Co center concomitant with a complex charge redistribution involving the porphyrin ligand. Thus, we demonstrate an unusual metalloporphyrin coordination geometry that opens pathways to spatially order and engineer magnetic moments in surface-based nanostructures.

18.
Phys Rev Lett ; 114(8): 087201, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25768775

RESUMO

The interaction between the endohedral unit in the single-molecule magnet Dy_{2}ScN@C_{80} and a rhodium (111) substrate leads to alignment of the Dy 4f orbitals. The resulting orientation of the Dy_{2}ScN plane parallel to the surface is inferred from comparison of the angular anisotropy of x-ray absorption spectra and multiplet calculations in the corresponding ligand field. The x-ray magnetic circular dichroism is also angle dependent and signals strong magnetocrystalline anisotropy. This directly relates geometric and magnetic structure. Element specific magnetization curves from different coverages exhibit hysteresis at a sample temperature of ∼4 K. From the measured hysteresis curves, we estimate the zero field remanence lifetime during x-ray exposure of a submonolayer to be about 30 seconds.

19.
Science ; 344(6187): 988-92, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24812206

RESUMO

Designing systems with large magnetic anisotropy is critical to realize nanoscopic magnets. Thus far, the magnetic anisotropy energy per atom in single-molecule magnets and ferromagnetic films remains typically one to two orders of magnitude below the theoretical limit imposed by the atomic spin-orbit interaction. We realized the maximum magnetic anisotropy for a 3d transition metal atom by coordinating a single Co atom to the O site of an MgO(100) surface. Scanning tunneling spectroscopy reveals a record-high zero-field splitting of 58 millielectron volts as well as slow relaxation of the Co atom's magnetization. This striking behavior originates from the dominating axial ligand field at the O adsorption site, which leads to out-of-plane uniaxial anisotropy while preserving the gas-phase orbital moment of Co, as observed with x-ray magnetic circular dichroism.

20.
ACS Nano ; 8(5): 4662-71, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24645922

RESUMO

We present a comprehensive study of Er(trensal) single-ion magnets deposited in ultrahigh vacuum onto metallic surfaces. X-ray photoelectron spectroscopy reveals that the molecular structure is preserved after sublimation, and that the molecules are physisorbed on Au(111) while they are chemisorbed on a Ni thin film on Cu(100) single-crystalline surfaces. X-ray magnetic circular dichroism (XMCD) measurements performed on Au(111) samples covered with molecular monolayers held at temperatures down to 4 K suggest that the easy axes of the strongly anisotropic molecules are randomly oriented. Furthermore XMCD indicates a weak antiferromagnetic exchange coupling between the single-ion magnets and the ferromagnetic Ni/Cu(100) substrate. For the latter case, spin-Hamiltonian fits to the XMCD M(H) suggest a significant structural distortion of the molecules. Scanning tunneling microscopy reveals that the molecules are mobile on Au(111) at room temperature, whereas they are more strongly attached on Ni/Cu(100). X-ray photoelectron spectroscopy results provide evidence for the chemical bonding between Er(trensal) molecules and the Ni substrate. Density functional theory calculations support these findings and, in addition, reveal the most stable adsorption configuration on Ni/Cu(100) as well as the Ni-Er exchange path. Our study suggests that the magnetic moment of Er(trensal) can be stabilized via suppression of quantum tunneling of magnetization by exchange coupling to the Ni surface atoms. Moreover, it opens up pathways toward optical addressing of surface-deposited single-ion magnets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA