Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(11): 115201, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37774258

RESUMO

We present a statistical analysis of ion distributions in magnetic reconnection jets using data from the Magnetospheric Multiscale spacecraft. Compared with the quiet plasma in which the jet propagates, we often find anisotropic and non-Maxwellian ion distributions in the plasma jets. We observe magnetic field fluctuations associated with unstable ion distributions, but the wave amplitudes are not large enough to scatter ions during the observed travel time of the jet. We estimate that the phase-space diffusion due to chaotic and quasiadiabatic ion motion in the current sheet is sufficiently fast to be the primary process leading to isotropization.

2.
Space Sci Rev ; 219(3): 22, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007705

RESUMO

The objective of the Psyche Magnetometry Investigation is to test the hypothesis that asteroid (16) Psyche formed from the core of a differentiated planetesimal. To address this, the Psyche Magnetometer will measure the magnetic field around the asteroid to search for evidence of remanent magnetization. Paleomagnetic measurements of meteorites and dynamo theory indicate that a diversity of planetesimals once generated dynamo magnetic fields in their metallic cores. Likewise, the detection of a strong magnetic moment ( > 2 × 10 14 Am 2 ) at Psyche would likely indicate that the body once generated a core dynamo, implying that it formed by igneous differentiation. The Psyche Magnetometer consists of two three-axis fluxgate Sensor Units (SUs) mounted 0.7 m apart along a 2.15-m long boom and connected to two Electronics Units (EUs) located within the spacecraft bus. The Magnetometer samples at up to 50 Hz, has a range of ± 80 , 000 nT , and an instrument noise of 39 pT axis - 1 3 σ integrated over 0.1 to 1 Hz. The two pairs of SUs and EUs provide redundancy and enable gradiometry measurements to suppress noise from flight system magnetic fields. The Magnetometer will be powered on soon after launch and acquire data for the full duration of the mission. The ground data system processes the Magnetometer measurements to obtain an estimate of Psyche's dipole moment.

3.
Nat Commun ; 13(1): 3241, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35688827

RESUMO

Magnetic reconnection is a fundamental plasma process by which magnetic field lines on two sides of the current sheet flow inward to yield an X-line topology. It is responsible for producing energetic electrons in explosive phenomena in space, astrophysical, and laboratorial plasmas. The X-line region is supposed to be the important place for generating energetic electrons. However, how these energetic electrons are generated in such a limited region is still poorly understood. Here, using Magnetospheric multiscale mission data acquired in Earth's magnetotail, we present direct evidence of super-thermal electrons up to 300 keV inside an X-line region, and the electrons display a power-law spectrum with an index of about 8.0. Concurrently, three-dimensional network of dynamic filamentary currents in electron scale is observed and leads to electromagnetic turbulence therein. The observations indicate that the electrons are effectively accelerated while the X-line region evolves into turbulence with a complex filamentary current network.

4.
Life (Basel) ; 11(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374247

RESUMO

The NASA/Dawn mission has acquired unprecedented measurements of the surface of the dwarf planet Ceres, the composition of which is a mixture of ultra-carbonaceous material, phyllosilicates, carbonates, organics, Fe-oxides, and volatiles as determined by remote sensing instruments including the VIR imaging spectrometer. We performed a refined analysis merging visible and infrared observations of Ceres' surface for the first time. The overall shape of the combined spectrum suggests another type of silicate not previously considered, and we confirmed a large abundance of carbon material. More importantly, by analyzing the local spectra of the organic-rich region of the Ernutet crater, we identified a reddening in the visible range, strongly correlated to the aliphatic signature at 3.4 µm. Similar reddening was found in the bright material making up Cerealia Facula in the Occator crater. This implies that organic material might be present in the source of the faculae, where brines and organics are mixed in an environment that may be favorable for prebiotic chemistry.

5.
Phys Rev Lett ; 124(25): 255101, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32639771

RESUMO

A familiar problem in space and astrophysical plasmas is to understand how dissipation and heating occurs. These effects are often attributed to the cascade of broadband turbulence which transports energy from large scale reservoirs to small scale kinetic degrees of freedom. When collisions are infrequent, local thermodynamic equilibrium is not established. In this case the final stage of energy conversion becomes more complex than in the fluid case, and both pressure-dilatation and pressure strain interactions (Pi-D≡-Π_{ij}D_{ij}) become relevant and potentially important. Pi-D in plasma turbulence has been studied so far primarily using simulations. The present study provides a statistical analysis of Pi-D in the Earth's magnetosheath using the unique measurement capabilities of the Magnetospheric Multiscale (MMS) mission. We find that the statistics of Pi-D in this naturally occurring plasma environment exhibit strong resemblance to previously established fully kinetic simulations results. The conversion of energy is concentrated in space and occurs near intense current sheets, but not within them. This supports recent suggestions that the chain of energy transfer channels involves regional, rather than pointwise, correlations.

6.
Phys Rev Lett ; 124(22): 225101, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32567898

RESUMO

We present estimates of the turbulent energy-cascade rate derived from a Hall-magnetohydrodynamic (MHD) third-order law. We compute the contribution from the Hall term and the MHD term to the energy flux. Magnetospheric Multiscale (MMS) data accumulated in the magnetosheath and the solar wind are compared with previously established simulation results. Consistent with the simulations, we find that at large (MHD) scales, the MMS observations exhibit a clear inertial range dominated by the MHD flux. In the subion range, the cascade continues at a diminished level via the Hall term, and the change becomes more pronounced as the plasma beta increases. Additionally, the MHD contribution to interscale energy transfer remains important at smaller scales than previously thought. Possible reasons are offered for this unanticipated result.

7.
Astrobiology ; 20(2): 269-291, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31904989

RESUMO

Ceres, the most water-rich body in the inner solar system after Earth, has recently been recognized to have astrobiological importance. Chemical and physical measurements obtained by the Dawn mission enabled the quantification of key parameters, which helped to constrain the habitability of the inner solar system's only dwarf planet. The surface chemistry and internal structure of Ceres testify to a protracted history of reactions between liquid water, rock, and likely organic compounds. We review the clues on chemical composition, temperature, and prospects for long-term occurrence of liquid and chemical gradients. Comparisons with giant planet satellites indicate similarities both from a chemical evolution standpoint and in the physical mechanisms driving Ceres' internal evolution.


Assuntos
Evolução Química , Exobiologia/métodos , Planetas Menores , Água/química , Oceanos e Mares
8.
Nat Commun ; 10(1): 4672, 2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31611553

RESUMO

Naturally occurring chorus emissions are a class of electromagnetic waves found in the space environments of the Earth and other magnetized planets. They play an essential role in accelerating high-energy electrons forming the hazardous radiation belt environment. Chorus typically occurs in two distinct frequency bands separated by a gap. The origin of this two-band structure remains a 50-year old question. Here we report, using NASA's Van Allen Probe measurements, that banded chorus waves are commonly accompanied by two separate anisotropic electron components. Using numerical simulations, we show that the initially excited single-band chorus waves alter the electron distribution immediately via Landau resonance, and suppress the electron anisotropy at medium energies. This naturally divides the electron anisotropy into a low and a high energy components which excite the upper-band and lower-band chorus waves, respectively. This mechanism may also apply to the generation of chorus waves in other magnetized planetary magnetospheres.

9.
J Geophys Res Space Phys ; 124(2): 1173-1186, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31008008

RESUMO

The structure of the current sheet along the Magnetospheric Multiscale (MMS) orbit is examined during the 11 July 2017 Electron Diffusion Region (EDR) event. The location of MMS relative to the X-line is deduced and used to obtain the spatial changes in the electron parameters. The electron velocity gradient values are used to estimate the reconnection electric field sustained by nongyrotropic pressure. It is shown that the observations are consistent with theoretical expectations for an inner EDR in 2-D reconnection. That is, the magnetic field gradient scale, where the electric field due to electron nongyrotropic pressure dominates, is comparable to the gyroscale of the thermal electrons at the edge of the inner EDR. Our approximation of the MMS observations using a steady state, quasi-2-D, tailward retreating X-line was valid only for about 1.4 s. This suggests that the inner EDR is localized; that is, electron outflow jet braking takes place within an ion inertia scale from the X-line. The existence of multiple events or current sheet processes outside the EDR may play an important role in the geometry of reconnection in the near-Earth magnetotail.

10.
Sci Adv ; 5(2): eaau9926, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30820454

RESUMO

Collisionless shocks are ubiquitous throughout the universe: around stars, supernova remnants, active galactic nuclei, binary systems, comets, and planets. Key information is carried by electromagnetic emissions from particles accelerated by high Mach number collisionless shocks. These shocks are intrinsically nonstationary, and the characteristic physical scales responsible for particle acceleration remain unknown. Quantifying these scales is crucial, as it affects the fundamental process of redistributing upstream plasma kinetic energy into other degrees of freedom-particularly electron thermalization. Direct in situ measurements of nonstationary shock dynamics have not been reported. Thus, the model that best describes this process has remained unknown. Here, we present direct evidence demonstrating that the transition to nonstationarity is associated with electron-scale field structures inside the shock ramp.

11.
Phys Rev Lett ; 122(3): 035102, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30735422

RESUMO

The description of the local turbulent energy transfer and the high-resolution ion distributions measured by the Magnetospheric Multiscale mission together provide a formidable tool to explore the cross-scale connection between the fluid-scale energy cascade and plasma processes at subion scales. When the small-scale energy transfer is dominated by Alfvénic, correlated velocity, and magnetic field fluctuations, beams of accelerated particles are more likely observed. Here, for the first time, we report observations suggesting the nonlinear wave-particle interaction as one possible mechanism for the energy dissipation in space plasmas.

12.
Phys Rev Lett ; 123(25): 255101, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31922784

RESUMO

We report observations of electromagnetic electron holes (EHs). We use multispacecraft analysis to quantify the magnetic field contributions of three mechanisms: the Lorentz transform, electron drift within the EH, and Cherenkov emission of whistler waves. The first two mechanisms account for the observed magnetic fields for slower EHs, while for EHs with speeds approaching half the electron Alfvén speed, whistler waves excited via the Cherenkov mechanism dominate the perpendicular magnetic field. The excited whistler waves are kinetically damped and typically confined within the EHs.

13.
Science ; 362(6410)2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30287636

RESUMO

During 2017, the Cassini fluxgate magnetometer made in situ measurements of Saturn's magnetic field at distances ~2550 ± 1290 kilometers above the 1-bar surface during 22 highly inclined Grand Finale orbits. These observations refine the extreme axisymmetry of Saturn's internal magnetic field and show displacement of the magnetic equator northward from the planet's physical equator. Persistent small-scale magnetic structures, corresponding to high-degree (>3) axisymmetric magnetic moments, were observed. This suggests secondary shallow dynamo action in the semiconducting region of Saturn's interior. Some high-degree magnetic moments could arise from strong high-latitude concentrations of magnetic flux within the planet's deep dynamo. A strong field-aligned current (FAC) system is located between Saturn and the inner edge of its D-ring, with strength comparable to the high-latitude auroral FACs.

14.
Phys Plasmas ; 25(2)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30344429

RESUMO

Turbulence is a fundamental physical process through which energy injected into a system at large scales cascades to smaller scales. In collisionless plasmas, turbulence provides a critical mechanism for dissipating electromagnetic energy. Here we present observations of plasma fluctuations in low-ß turbulence using data from NASA's Magnetospheric Multiscale mission in Earth's magnetosheath. We provide constraints on the partitioning of turbulent energy density in the fluid, ion-kinetic, and electron-kinetic ranges. Magnetic field fluctuations dominated the energy density spectrum throughout the fluid and ion-kinetic ranges, consistent with previous observations of turbulence in similar plasma regimes. However, at scales shorter than the electron inertial length, fluctuation power in electron kinetic energy significantly exceeded that of the magnetic field, resulting in an electron-motion-regulated cascade at small scales. This dominance should be highly relevant for the study of turbulence in highly magnetized laboratory and astrophysical plasmas.

15.
J Geophys Res Space Phys ; 123(2): 1260-1278, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29938154

RESUMO

We present characteristics of current layers in the off-equatorial near-Earth plasma sheet boundary observed with high time-resolution measurements from the Magnetospheric Multiscale mission during an intense substorm associated with multiple dipolarizations. The four Magnetospheric Multiscale spacecraft, separated by distances of about 50 km, were located in the southern hemisphere in the dusk portion of a substorm current wedge. They observed fast flow disturbances (up to about 500 km/s), most intense in the dawn-dusk direction. Field-aligned currents were observed initially within the expanding plasma sheet, where the flow and field disturbances showed the distinct pattern expected in the braking region of localized flows. Subsequently, intense thin field-aligned current layers were detected at the inner boundary of equatorward moving flux tubes together with Earthward streaming hot ions. Intense Hall current layers were found adjacent to the field-aligned currents. In particular, we found a Hall current structure in the vicinity of the Earthward streaming ion jet that consisted of mixed ion components, that is, hot unmagnetized ions, cold E × B drifting ions, and magnetized electrons. Our observations show that both the near-Earth plasma jet diversion and the thin Hall current layers formed around the reconnection jet boundary are the sites where diversion of the perpendicular currents take place that contribute to the observed field-aligned current pattern as predicted by simulations of reconnection jets. Hence, multiscale structure of flow braking is preserved in the field-aligned currents in the off-equatorial plasma sheet and is also translated to ionosphere to become a part of the substorm field-aligned current system.

16.
Sci Adv ; 4(3): e1701645, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29546235

RESUMO

Different carbonates have been detected on Ceres, and their abundance and spatial distribution have been mapped using a visible and infrared mapping spectrometer (VIR), the Dawn imaging spectrometer. Carbonates are abundant and ubiquitous across the surface, but variations in the strength and position of infrared spectral absorptions indicate variations in the composition and amount of these minerals. Mg-Ca carbonates are detected all over the surface, but localized areas show Na carbonates, such as natrite (Na2CO3) and hydrated Na carbonates (for example, Na2CO3·H2O). Their geological settings and accessory NH4-bearing phases suggest the upwelling, excavation, and exposure of salts formed from Na-CO3-NH4-Cl brine solutions at multiple locations across the planet. The presence of the hydrated carbonates indicates that their formation/exposure on Ceres' surface is geologically recent and dehydration to the anhydrous form (Na2CO3) is ongoing, implying a still-evolving body.

17.
Sci Adv ; 4(3): eaao3757, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29546238

RESUMO

The dwarf planet Ceres is known to host a considerable amount of water in its interior, and areas of water ice were detected by the Dawn spacecraft on its surface. Moreover, sporadic water and hydroxyl emissions have been observed from space telescopes. We report the detection of water ice in a mid-latitude crater and its unexpected variation with time. The Dawn spectrometer data show a change of water ice signatures over a period of 6 months, which is well modeled as ~2-km2 increase of water ice. The observed increase, coupled with Ceres' orbital parameters, points to an ongoing process that seems correlated with solar flux. The reported variation on Ceres' surface indicates that this body is chemically and physically active at the present time.

18.
Nat Commun ; 8: 14719, 2017 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-28361881

RESUMO

Alfvén waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales, they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres and astrophysical systems but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASA's Magnetospheric Multiscale (MMS) mission, we utilize Earth's magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfvén wave. Electrons confined between adjacent wave peaks may have contributed to saturation of damping effects via nonlinear particle trapping. The investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations.

19.
Earth Planets Space ; 69(1): 129, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32009832

RESUMO

We report on the large-scale evolution of dipolarization in the near-Earth plasma sheet during an intense (AL ~ -1000 nT) substorm on August 10, 2016, when multiple spacecraft at radial distances between 4 and 15 R E were present in the night-side magnetosphere. This global dipolarization consisted of multiple short-timescale (a couple of minutes) B z disturbances detected by spacecraft distributed over 9 MLT, consistent with the large-scale substorm current wedge observed by ground-based magnetometers. The four spacecraft of the Magnetospheric Multiscale were located in the southern hemisphere plasma sheet and observed fast flow disturbances associated with this dipolarization. The high-time-resolution measurements from MMS enable us to detect the rapid motion of the field structures and flow disturbances separately. A distinct pattern of the flow and field disturbance near the plasma boundaries was found. We suggest that a vortex motion created around the localized flows resulted in another field-aligned current system at the off-equatorial side of the BBF-associated R1/R2 systems, as was predicted by the MHD simulation of a localized reconnection jet. The observations by GOES and Geotail, which were located in the opposite hemisphere and local time, support this view. We demonstrate that the processes of both Earthward flow braking and of accumulated magnetic flux evolving tailward also control the dynamics in the boundary region of the near-Earth plasma sheet.Graphical AbstractMultispacecraft observations of dipolarization (left panel). Magnetic field component normal to the current sheet (BZ) observed in the night side magnetosphere are plotted from post-midnight to premidnight region: a GOES 13, b Van Allen Probe-A, c GOES 14, d GOES 15, e MMS3, g Geotail, h Cluster 1, together with f a combined product of energy spectra of electrons from MMS1 and MMS3 and i auroral electrojet indices. Spacecraft location in the GSM X-Y plane (upper right panel). Colorcoded By disturbances around the reconnection jets from the MHD simulation of the reconnection by Birn and Hesse (1996) (lower right panel). MMS and GOES 14-15 observed disturbances similar to those at the location indicated by arrows.

20.
Science ; 353(6303)2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27701085

RESUMO

The surface of dwarf planet Ceres contains hydroxyl-rich materials. Theories predict a water ice-rich mantle, and water vapor emissions have been observed, yet no water (H2O) has been previously identified. The Visible and InfraRed (VIR) mapping spectrometer onboard the Dawn spacecraft has now detected water absorption features within a low-illumination, highly reflective zone in Oxo, a 10-kilometer, geologically fresh crater, on five occasions over a period of 1 month. Candidate materials are H2O ice and mineral hydrates. Exposed H2O ice would become optically undetectable within tens of years under current Ceres temperatures; consequently, only a relatively recent exposure or formation of H2O would explain Dawn's findings. Some mineral hydrates are stable on geological time scales, but their formation would imply extended contact with ice or liquid H2O.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA