RESUMO
Unicuspid aortic valve (UAV) is a rare congenital valvular anomaly, often misdiagnosed as the more prevalent bicuspid aortic valve (BAV). The aim of this study was to explore demographic, clinical characteristics, diagnosis, surgical options, short and long term outcomes of young adults with UAV. A systematic review and meta-analysis of literature were conducted for studies (1971-2024) including patients (≥ 14 years old) with diagnosis of UAV. Among the 2953 studies retrieved, 67 case reports, 6 case series (n=130) and 13 retrospective studies (n=918), were included in the analysis. Data from retrospective studies were aggregated using a random effects model for estimating the pooled risk ratio and mean difference. UAV is mostly unicommissural in adults (mean age 36 years old at diagnosis, 76-79% males). The most common conditions associated in UAV patients were aortic coarctation (from 3.8 to 12%), ventricular septal defect (3%) and Turner syndrome (3%). In general, the diagnosis was performed with TTE and confirmed with TEE (+/- 3D-TEE). The most common types of surgery were AVR. Dilated ascending aorta was described in 44% and 35% of retrospective studies and case reports, respectively. Concomitant ascending aorta replacement/repair was reported 38% and 27% of retrospective studies and case reports, respectively. Overall survival was reported in 3 studies, ranging from 95 to 98% at 10 years. UAV should be considered a separate entity from BAV. Further investigations with regards to the possibility of a familial incidence, associated histopathological changes in the aorta, and ideal follow up and intervention are needed.
RESUMO
Unsuccessful tendon healing leads to fibrosis and occasionally calcification. In these metaplastic drifts, the mouse AT preclinical injury model represents a robust experimental setting for studying tendon calcifications. Previously, calcium deposits were found in about 30% of tendons after 28 days post-injury. Although a neuromediated healing process has previously been documented, the expression patterns of NF200, NGF, NPY, GAL, and CGRP in mouse AT and their roles in metaplastic calcific repair remain to be explored. This study included a spatiotemporal analysis of these neuromarkers during the inflammatory phase (7 days p.i.) and the proliferative/early-remodelling phase (28 days p.i.). While the inflammatory phase is characterised by NF200 and CGRP upregulation, in the 28 days p.i., the non-calcified tendons (n = 16/24) showed overall NGF, NPY, GAL, and CGRP upregulation (compared to 7 days post-injury) and a return of NF200 expression to values similar to pre-injury. Presenting a different picture, in calcified tendons (n = 8), NF200 persisted at high levels, while NGF and NPY significantly increased, resulting in a higher NPY/CGRP ratio. Therefore, high levels of NF200 and imbalance between vasoconstrictive (NPY) and vasodilatory (CGRP) neuromarkers may be indicative of calcification. Tendon cells contributed to the synthesis of neuromarkers, suggesting that their neuro-autocrine/paracrine role is exerted by coordinating growth factors, cytokines, and neuropeptides. These findings offer insights into the neurobiological mechanisms of early tendon healing and identify new neuromarker profiles predictive of tendon healing outcomes.
RESUMO
The electrospinning technique is a commonly employed approach to fabricate fibers intended for various tissue engineering applications. The aim of this study is to develop a novel strategy for tendon repair through the use of aligned poly(ε-caprolactone) (PCL) and poly(glycerol sebacate) (PGS) fibers fabricated in benign solvents, and further explore the potential application of PGS in tendon tissue engineering (TTE). The fibers were characterized for their morphological and physicochemical properties; amniotic epithelial stem cells (AECs) were used to assess the fibers teno-inductive and immunomodulatory potential due to their ability to teno-differentiate undergoing first a stepwise epithelial to mesenchymal transition, and due to their documented therapeutic role in tendon regeneration. The addition of PGS to PCL improved the spinnability of the polymer solution, as well as the uniformity and directionality of the so-obtained fibers. The mechanical properties were in the range of most TTE applications, specifically in the case of PCL/PGS 4:1 and 2:1 ratios. Compared to PCL alone, the same ratios also allowed a better AECs infiltration and growth over 7 days of culture, and triggered the activation of tendon-related genes (SCX, COL1, TNMD) and the expression of tenomodulin (TNMD) at the protein level. Concerning the immunomodulatory properties, both PCL and PCL/PGS fibers negatively affected the immunomodulatory profile of AECs, up-regulating both anti-inflammatory (IL-10) and pro-inflammatory (IL-12) cytokines over 7 days of culture. Overall, PCL/PGS 2:1 fibers fabricated with benign solvents proved to be the most suitable composition for TTE application based on their topographical cues, mechanical properties, biocompatibility, and teno-inductive properties.
RESUMO
BACKGROUND: Assisted Reproductive Technologies (ARTs) have been validated in human and animal to solve reproductive problems such as infertility, aging, genetic selection/amplification and diseases. The persistent gap in ART biomedical applications lies in recapitulating the early stage of ovarian folliculogenesis, thus providing protocols to drive the large reserve of immature follicles towards the gonadotropin-dependent phase. Tissue engineering is becoming a concrete solution to potentially recapitulate ovarian structure, mostly relying on the use of autologous early follicles on natural or synthetic scaffolds. Based on these premises, the present study has been designed to validate the use of the ovarian bioinspired patterned electrospun fibrous scaffolds fabricated with poly(ε-caprolactone) (PCL) for multiple preantral (PA) follicle development. METHODS: PA follicles isolated from lamb ovaries were cultured on PCL scaffold adopting a validated single-follicle protocol (Ctrl) or simulating a multiple-follicle condition by reproducing an artificial ovary engrafted with 5 or 10 PA (AO5PA and AO10PA). The incubations were protracted for 14 and 18 days before assessing scaffold-based microenvironment suitability to assist in vitro folliculogenesis (ivF) and oogenesis at morphological and functional level. RESULTS: The ivF outcomes demonstrated that PCL-scaffolds generate an appropriate biomimetic ovarian microenvironment supporting the transition of multiple PA follicles towards early antral (EA) stage by supporting follicle growth and steroidogenic activation. PCL-multiple bioengineering ivF (AO10PA) performed in long term generated, in addition, the greatest percentage of highly specialized gametes by enhancing meiotic competence, large chromatin remodeling and parthenogenetic developmental competence. CONCLUSIONS: The study showcased the proof of concept for a next-generation ART use of PCL-patterned scaffold aimed to generate transplantable artificial ovary engrafted with autologous early-stage follicles or to advance ivF technologies holding a 3D bioinspired matrix promoting a physiological long-term multiple PA follicle protocol.
Assuntos
Folículo Ovariano , Poliésteres , Engenharia Tecidual , Alicerces Teciduais , Feminino , Folículo Ovariano/crescimento & desenvolvimento , Folículo Ovariano/citologia , Alicerces Teciduais/química , Animais , Poliésteres/química , Engenharia Tecidual/métodos , Ovinos , Ovário/crescimento & desenvolvimento , Ovário/citologia , Oogênese/fisiologia , Oogênese/efeitos dos fármacos , Bioengenharia/métodos , Técnicas de Reprodução Assistida , Fertilização in vitro/métodosRESUMO
Stem cell-based therapy implementation relies heavily on advancements in cell tracking. The present research has been designed to develop a gold nanorod (AuNR) labeling protocol applied to amniotic epithelial cells (AECs) leveraging the pro-regenerative properties of this placental stem cell source which is widely used for both human and veterinary biomedical regenerative applications, although not yet exploited with tracking technologies. Ovine AECs, in native or induced mesenchymal (mAECs) phenotypes via epithelial-mesenchymal transition (EMT), served as the model. Initially, various uptake methods validated on other sources of mesenchymal stromal cells (MSCs) were assessed on mAECs before optimization for AECs. Furthermore, the protocol was implemented by adopting the biological strategy of MitoCeption to improve endocytosis. The results indicate that the most efficient, affordable, and easy protocol leading to internalization of AuNRs in living mAECs recognized the combination of the one-step uptake condition (cell in suspension), centrifugation-mediated internalization method (G-force) and MitoCeption (mitochondrial isolated from mAECs). This protocol produced labeled vital mAECs within minutes, suitable for preclinical and clinical trials. The optimized protocol has the potential to yield feasible labeled amniotic-derived cells for biomedical purposes: up to 10 million starting from a single amniotic membrane. Similar and even higher efficiency was found when the protocol was applied to ovine and human AECs, thereby demonstrating the transferability of the method to cells of different phenotypes and species-specificity, hence validating its great potential for the development of improved biomedical applications in cell-based therapy and diagnostic imaging.
Assuntos
Âmnio , Ouro , Animais , Ovinos , Ouro/química , Âmnio/química , Âmnio/citologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Humanos , Células Epiteliais/citologia , Nanopartículas Metálicas/química , Células Cultivadas , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Tamanho da PartículaRESUMO
Background/Objectives. Novel diagnostic and therapeutic approaches are needed to improve the clinical management of nonfunctioning pituitary neuroendocrine tumors (NF-PitNETs). Here, the expression of two proteins controlling the epithelial-mesenchymal transition (EMT)-an underlying NF-PitNET pathogenic mechanism-were analyzed as prognostic markers: E-cadherin (E-Cad) and KLHL14. Methods. The immunohistochemistry characterization of KLHL14 and E-Cad subcellular expression in surgical specimens of 12 NF-PitNET patients, with low and high invasiveness grades (respectively, Ki67+ < and ≥3%) was carried out. Results. The analysis of healthy vs. NF-PitNET tissues demonstrated an increased protein expression and nuclear translocation of KLHL14. Moreover, both E-Cad and KLHL14 shifted from a cytoplasmic (C) form in a low invasive NF-PitNET to a nuclear (N) localization in a high invasive NF-PitNET. A significant correlation was found between E-Cad/KLHL14 co-localization in the cytoplasm (p = 0.01) and nucleus (p = 0.01) and with NF-PitNET invasiveness grade. Conclusions. Nuclear buildup of both E-Cad and KLHL14 detected in high invasive NF-PitNET patients highlights a novel intracellular mechanism governing the tumor propensity to local invasion (Ki67+ ≥ 3%). The prolonged progression-free survival trend documented in patients with lower KLHL14 expression further supported such a hypothesis even if a larger cohort of NF-PitNET patients have to be analyzed to definitively recognize a key prognostic role for KLHL14.
RESUMO
Adipose-derived stem cells (ADSCs) hold promise for tendon repair, even if their tenogenic plasticity and underlying mechanisms remain only partially understood, particularly in cells derived from the ovine animal model. This study aimed to characterize oADSCs during in vitro expansion to validate their phenotypic properties pre-transplantation. Moreover, their tenogenic potential was assessed using two in vitro-validated approaches: (1) teno-inductive conditioned media (CM) derived from a co-culture between ovine amniotic stem cells and fetal tendon explants, and (2) short- (48 h) and long-term (14 days) seeding on highly aligned PLGA (ha-PLGA) electrospun scaffold. Our findings indicate that oADSCs can be expanded without senescence and can maintain the expression of stemness (Sox2, Oct4, Nanog) and mesenchymal (CD29, CD166, CD44, CD90) markers while remaining negative for hematopoietic (CD31, CD45) and MHC-II antigens. Of note, oADSCs' tendon differentiation potential greatly depended on the in vitro strategy. oADSCs exposed to CM significantly upregulated tendon-related genes (COL1, TNMD, THBS4) but failed to accumulate TNMD protein at 14 days of culture. Conversely, oADSCs seeded on ha-PLGA fleeces quickly upregulated the tendon-related genes (48 h) and in 14 days accumulated high levels of the TNMD protein into the cytoplasm of ADSCs, displaying a tenocyte-like morphology. This mechano-sensing cellular response involved a complete SOX9 downregulation accompanied by YAP activation, highlighting the efficacy of biophysical stimuli in promoting tenogenic differentiation. These findings underscore oADSCs' long-term self-renewal and tendon differentiative potential, thus opening their use in a preclinical setting to develop innovative stem cell-based and tissue engineering protocols for tendon regeneration, applied to the veterinary field.
RESUMO
The paracrine crosstalk between amniotic-derived membranes (AMs)/epithelial cells (AECs) and immune cells is pivotal in tissue healing following inflammation. Despite evidence collected to date, gaps in understanding the underlying molecular mechanisms have hindered clinical applications. The present study represents a significant step forward demonstrating that amphiregulin (AREG) orchestrates the native immunomodulatory functions of amniotic derivatives via the COX-2/PGE2/EP4 axis. The results highlight the immunosuppressive efficacy of PGE2-dependent AREG release, dampening PBMCs' activation, and NFAT pathway in Jurkat reporter cells via TGF-ß signaling. Moreover, AREG emerges as a key protein mediator by attenuating acute inflammatory response in Tg(lysC:DsRed2) zebrafish larvae. Notably, the interplay of diverse COX-2/PGE2 pathway activators enables AM/AEC to adapt rapidly to external stimuli (LPS and/or stretching) through a responsive positive feedback loop on the AREG/EGFR axis. These findings offer valuable insights for developing innovative cell-free therapies leveraging the potential of amniotic derivatives in immune-mediated diseases and regenerative medicine.
RESUMO
The Pew Charitable Trust's 2020 report 'Breaking the Plastic Wave', indicates that existing technologies could support an 80% reduction in plastic leakage relative to business as usual by 2040. Therefore, South Africa became the first country to work with the Pew Charitable Trust and Oxford University to test and apply 'Pathways', a modelling framework and software tool which stemmed and evolved from the Pew report, at country level. The tool calculates the flows of plastics in the economy and the impact of various strategies to reduce future plastic pollution. The Scenario Builder within the Pathways tool allows the user to optimise flows in the plastics value chain to satisfy a set of defined objectives in order to achieve an optimal solution. Three major findings have emerged from the application of Pathways at country level for South Africa. Firstly, plastic pollution is set to almost double by 2040 if no interventions are implemented. Secondly, meeting the newly legislated extended producer responsibility (EPR) targets set for plastic packaging can avoid 33% of projected total pollution over the period of 2023-2040. Lastly, an optimal system change can avoid 63% of total plastic pollution over the period 2023-2040. Thus, applying Pathways at country level in South Africa has proven to be valuable by setting a baseline against which progress towards reducing plastic pollution can be measured; determining the outcome of meeting the legislated EPR targets over time, and informing policy decisions by allowing users to model different scenarios towards an optimal system change scenario.
Assuntos
Poluição Ambiental , Plásticos , Gerenciamento de Resíduos , África do Sul , Poluição Ambiental/prevenção & controle , Gerenciamento de Resíduos/métodos , Reciclagem/métodos , Modelos Teóricos , Eliminação de Resíduos/métodosRESUMO
Introduction: Excessive calorie intake poses a significant threat to female fertility, leading to hormonal imbalances and reproductive challenges. Overconsumption of unhealthy fats exacerbates ovarian dysfunction, with an overproduction of reactive oxygen species causing oxidative stress, impairing ovarian follicle development and leading to irregular ovulation and premature ovarian failure. Interest in biological matrices with high antioxidant properties to combat diet-related oxidative stress has grown, as they contain various bioactive factors crucial for neutralizing free radicals potentially preventing female reproductive health. This systematic review evaluates the female reproductive impact of biological matrices in mitigating oxidative damages induced by over calory habits and, in particular, high fat diets. Methods: A comparative approach among mammalian models was utilized to interpret literature available data. This approach specifically investigates the antioxidant mechanisms of biological matrices on early and late ovarian folliculogenesis, under physiological and hormone-induced female reproductive cycle. Adhering to the PRISMA 2020 guidelines, only English-language publications from peer-reviewed international indexes were considered. Results: The analysis of 121 publications meeting the inclusion criteria facilitated the identification of crucial components of biological matrices. These components, including carbocyclic sugars, phytonutrients, organosulfur compounds, and vitamins, were evaluated for their impact on ovarian follicle resilience, oocyte quality, and reproductive lifespan. The detrimental effects of oxidative stress on female fertility, particularly exacerbated by high saturated fat diets, are well-documented. In vivo studies across mammalian preclinical models have underscored the potential of antioxidants derived from biological matrices to mitigate diet-induced conditions. These antioxidants enhance steroidogenesis and ovarian follicle development, thereby improving oocyte quality. Additionally, discussions within these publications emphasized the clinical significance of these biological matrices, translating research findings into practical applications for female health. Conclusion: Further research is essential to fully exploit the potential of these matrices in enhancing female reproduction and mitigating the effects of diets rich in fatty acids. This requires intensified in vitro studies and comprehensive collection of in vivo data before clinical trials. The promotion of ovarian resilience offers promising avenues for enhancing understanding and advancing female reproductive health world-wide.
RESUMO
Regenerative medicine harnesses stem cells' capacity to restore damaged tissues and organs. In vitro methods employing specific bioactive molecules, such as growth factors, bio-inductive scaffolds, 3D cultures, co-cultures, and mechanical stimuli, steer stem cells toward the desired differentiation pathways, mimicking their natural development. Chondrogenesis presents a challenge for regenerative medicine. This intricate process involves precise modulation of chondro-related transcription factors and pathways, critical for generating cartilage. Cartilage damage disrupts this process, impeding proper tissue healing due to its unique mechanical and anatomical characteristics. Consequently, the resultant tissue often forms fibrocartilage, which lacks adequate mechanical properties, posing a significant hurdle for effective regeneration. This review comprehensively explores studies showcasing the potential of amniotic mesenchymal stem cells (AMSCs) and amniotic epithelial cells (AECs) in chondrogenic differentiation. These cells exhibit innate characteristics that position them as promising candidates for regenerative medicine. Their capacity to differentiate toward chondrocytes offers a pathway for developing effective regenerative protocols. Understanding and leveraging the innate properties of AMSCs and AECs hold promise in addressing the challenges associated with cartilage repair, potentially offering superior outcomes in tissue regeneration.
Assuntos
Âmnio , Diferenciação Celular , Condrogênese , Humanos , Âmnio/citologia , Animais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Condrócitos/citologia , Condrócitos/metabolismo , Medicina Regenerativa/métodos , Engenharia Tecidual/métodosRESUMO
INTRODUCTION: Androgenetic alopecia (AGA) is a prevalent, multifactorial form of hair loss involving complex aetiological factors, such as altered androgen regulation and energy metabolism. Existing treatments offer limited success, thus highlighting the need for advanced, personalised therapeutic strategies. This study focuses on correlating the genetic mechanisms of AGA with molecular targets involved in the response to current treatment modalities. METHODS: An anonymised database including 26,607 patients was subjected to analysis. The dataset included information on patients' genotypes in 26 single nucleotide polymorphisms (SNPs), specifically, and diagnosed AGA grades, representing a broad range of ethnic backgrounds. RESULTS: In our sample, 64.6% of males and 35.4% of females were diagnosed with female pattern hair loss. This distribution aligns well with prior studies, thus validating the representativeness of our dataset. AGA grading was classified using the Hamilton-Norwood and Ludwig scales, although no association was found to the grade of the disease. SNP association analysis revealed eight SNPs, namely rs13283456 (PTGES2), rs523349 (SRD5A2), rs1800012 (COL1A1), rs4343 (ACE), rs10782665 (PTGFR), rs533116 (PTGDR2), rs12724719 (CRABP2) and rs545659 (PTGDR2), to be statistically significant with a p-value below 0.05. CONCLUSIONS: The study establishes a preliminary association between eight specific SNPs and AGA. These genetic markers offer insights into the variability of therapeutic responses, thus underlining the importance of personalised treatment approaches. Our findings show the potential for more targeted research to understand these SNPs' and further roles in AGA pathophysiology and in modulating treatment response.
RESUMO
Cross-presentation by type 1 DCs (cDC1) is critical to induce and sustain antitumoral CD8 T cell responses to model antigens, in various tumor settings. However, the impact of cross-presenting cDC1 and the potential of DC-based therapies in tumors carrying varied levels of bona-fide neoantigens (neoAgs) remain unclear. Here we develop a hypermutated model of non-small cell lung cancer in female mice, encoding genuine MHC-I neoepitopes to study neoAgs-specific CD8 T cell responses in spontaneous settings and upon Flt3L + αCD40 (DC-therapy). We find that cDC1 are required to generate broad CD8 responses against a range of diverse neoAgs. DC-therapy promotes immunogenicity of weaker neoAgs and strongly inhibits the growth of high tumor-mutational burden (TMB) tumors. In contrast, low TMB tumors respond poorly to DC-therapy, generating mild CD8 T cell responses that are not sufficient to block progression. scRNA transcriptional analysis, immune profiling and functional assays unveil the changes induced by DC-therapy in lung tissues, which comprise accumulation of cDC1 with increased immunostimulatory properties and less exhausted effector CD8 T cells. We conclude that boosting cDC1 activity is critical to broaden the diversity of anti-tumoral CD8 T cell responses and to leverage neoAgs content for therapeutic advantage.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Feminino , Camundongos , Animais , Células Dendríticas , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/metabolismo , Linfócitos T CD8-Positivos , Apresentação CruzadaRESUMO
BACKGROUND: Hyperglycemia can promote the development of prostate cancer (PCa). Differential expression levels of miRNAs between PCa patients and controls were also reported. Therefore, we examined the relationship between hyperglycemia and miRNA levels in PCa. METHODS: Relative expression of urinary miR-574-3p, miR-375, miR-205-5p, miR-200b-3p, miR-187-3p, miR-182-5p, and miR-100-5p were investigated in 105 PCa patients and 138 noncancer controls by Real-Time quantitative PCR. Fasting plasma glucose measurements were retrieved from clinical records. The differential miRNA expressions among groups were compared using non-parametric tests. Correlations with glucose and prostate-specific antigen (PSA) were tested using Pearson correlation coefficient. RESULTS: When we analyzed miRNA expression according to glycemic state, significant down-regulations were found for miR-200b-3p, miR-187-3p, miR-182-5p, and miR-100-5p in noncancer controls with high glucose. The lowest down-regulations were observed for miR-187-3p, miR-182-5p, and miR-100-5p. Subsequently, when hyperglycemia was considered in PCa, significant dysregulations of selected miRNAs were found in hyperglycemic PCa patients than in controls with high glucose. In particular, miR-375 and miR-182-5p showed a 3-FC in hyperglycemic PCa patients than controls who left hyperglycemia untreated. Conversely, only a down-regulation of miR-574-3p was observed in PCa patients regardless of glycemic status and only modest down-regulation of miR-574-3p, miR-200b-3p, miR-187-3p and miR-182-5p were found in normoglycemic PCa patients. Next, significant correlations between miRNAs and glucose (miR-200b-3p, miR-100-5p) and PSA (miR-205-5p and miR-187-3p) were detected in controls. Similarly, miR-205-5p and miR-187-3p were correlated with glucose in PCa patients, while miR-574-3p and miR-375 showed inverse relationships. CONCLUSIONS: miRNA dysregulations can occur in hyperglycemic PCa patients as compared to noncancer controls who left hyperglycemia untreated. Hyperglycemia can consistently promote the expression of miR-375 and miR-182-5p. Uncontrolled hyperglycemic state could contribute to the creation of a suitable microenvironment for later PCa development by promoting gene expression.
RESUMO
Tendon diseases pose a significant challenge in regenerative medicine due to the limited healing capacity of this tissue. Successful tendon regeneration requires a combination of angiogenesis, immune response, and tenogenesis processes. An effective tendon engineering (TE) strategy must finely tune this systems' interplay toward homeostasis. This study explores in vitro the paracrine influence of amniotic epithelial stem cells (AECs) engineered on a validated 3D electrospun PLGA scaffolds on HUVECs (angiogenesis), PBMCs/Jurkat (immune response), and AECs (tenogenic stem cell activation). The results revealed the role of scaffold's topology and topography in significantly modulating the paracrine profile of the cells. In detail, AECs basal release of bioactive molecules was boosted in the cells engineered on 3D scaffolds, in particular VEGF-D, b-FGF, RANTES, and PDGF-BB (p < 0.0001 vs. CMCTR). Moreover, biological tests demonstrated 3D scaffolds' proactive role in potentiating AECs' paracrine inhibition on PBMCs proliferation (CM3Dvs. CTR, p < 0.001) and LPS-mediated Jurkat activation with respect to controls (CM3D and CM2Dvs. CTR, p < 0.01 and p < 0.05, respectively), without exerting any in vitro pro-angiogenic role in promoting HUVECs proliferation and tubule formation. Teno-inductive paracrine ability of AECs engineered on 3D scaffolds was assessed on co-cultured ones, which formed tendon-like structures. These latter demonstrated an upregulation of tendon-related genes (SCX, THBS4, COL1, and TNMD) and the expression TNMD and COL1 proteins. Overall, this research underscores the pivotal role of the 3D topology and topography of PLGA tendon mimetic scaffolds in orchestrating effective tendon regeneration through modulating cell behavior and crosstalk between engineered stem cells and different subpopulations in the damaged tendon.
RESUMO
Amniotic membrane (AM) is considered an important medical device for applications in regenerative medicine. The therapeutic properties of AM are due to its resistant extracellular matrix and to the large number of bioactive molecules released by its cells. To this regard, ovine amniotic epithelial cells (AECs) are a subset of placental stem cells with great regenerative and immunomodulatory properties. Indeed, either oAEC or AM have been object of intense study for regenerative medicine, thanks to several advantages in developing preclinical studies on a high value translational animal model, such as sheep. For this reason, a critical standardization of cultural practices is fundamental in order to maintain, on one hand, AM integrity and structure and, on the other hand, oAEC native properties, thus improving their in vivo therapeutic potential and clinical outcomes.In addition, freshly isolated AECs or AM can be exploited to produce enriched immunomodulatory secretomes that had been used with success into cell-free regenerative medicine procedures.To this aim, here is described an improved oAEC cultural protocol able to preserve their native epithelial phenotype also after the in vitro amplification and an innovative AM in vitro cultural protocol design to prolong the integrity and the biological properties of this tissue in order to collect stable conditioned media enriched with immunomodulatory factors.
Assuntos
Âmnio , Placenta , Ovinos , Animais , Feminino , Gravidez , Técnicas de Cultura de Células , Células Epiteliais , Medicina RegenerativaRESUMO
Purpose: Obesity is a multifactorial condition with a relevant genetic correlation. Recent advances in genomic research have identified several single nucleotide polymorphisms (SNPs) in genes such as FTO, MCM6, HLA, and MC4R, associated with obesity. This study aimed to evaluate the association of 102 SNPs with BMI and weight loss treatment response in a multi-ethnic population. Methods: The study analyzed 9,372 patients for the correlation between SNPs and BMI (dataset A). The correlation between SNP and weight loss was accessed in 474 patients undergoing different treatments (dataset B). Patients in dataset B were further divided into 3 categories based on the type of intervention: dietary therapy, intragastric balloon procedures, or surgeries. SNP association analysis and multiple models of inheritance were performed. Results: In dataset A, ten SNPs, including rs9939609 (FTO), rs4988235 (MCM6), and rs2395182 (HLA), were significantly associated with increased BMI. Additionally, other four SNPs, rs7903146 (TCF7L2), (rs6511720), rs5400 (SLC2A2), and rs7498665 (SH2B1), showed sex-specific correlation. For dataset B, SNPs rs2016520 (PPAR-Delta) and rs2419621 (ACSL5) demonstrated significant correlation with weight loss for all treatment types. In patients who adhered to dietary therapy, SNPs rs6544713 (ABCG8) and rs762551 (CYP1A2) were strongly correlated with weight loss. Patients undergoing surgical or endoscopic procedures exhibited differential correlations with several SNPs, including rs1801725 (CASR) and rs12970134 (MC4R), and weight loss. Conclusion: This study provides valuable insights into the genetic factors influencing BMI and weight loss response to different treatments. The findings highlight the potential for personalized weight management approaches based on individual genetic profiles.
RESUMO
The aim of the second edition of this Special Issue was to collect both review and original research articles that investigate and elucidate the possible therapeutic role of perinatal stem cells in pathological conditions, such as cardiovascular and metabolic diseases, as well as inflammatory, autoimmune, musculoskeletal, and degenerative diseases [...].
Assuntos
Líquido Amniótico , Placenta , Gravidez , Feminino , Humanos , Células-Tronco , PartoRESUMO
Epithelial-mesenchymal transition (EMT) changes cell phenotype by affecting immune properties of amniotic epithelial cells (AECs). The present study shows how the response to lipopolysaccharide of cells collected pre- (eAECs) and post-EMT (mAECs) induces changes in their transcriptomics profile. In fact, eAECs mainly upregulate genes involved in antigen-presenting response, whereas mAECs over-express soluble inflammatory mediator transcripts. Consistently, network analysis identifies CIITA and Nrf2 as main drivers of eAECs and mAECs immune response, respectively. As a consequence, the depletion of CIITA and Nrf2 impairs the ability of eAECs and mAECs to inhibit lymphocyte proliferation or macrophage-dependent IL-6 release, thus confirming their involvement in regulating immune response. Deciphering the mechanisms controlling the immune function of AECs pre- and post-EMT represents a step forward in understanding key physiological events wherein these cells are involved (pregnancy and labor). Moreover, controlling the immunomodulatory properties of eAECs and mAECs may be essential in developing potential strategies for regenerative medicine applications.
RESUMO
The application of biomaterials on immune regenerative strategies to deal with unsolved pathologies is getting attention in the field of tissue engineering. In this context, graphene oxide (GO) has been proposed as an immune-mimetic material largely used for developing stem cell-based regenerative therapies, since it has shown to influence stem cell behavior and modulate their immune response. Similarly, amniotic epithelial stem cells (AECs) are getting an increasing clinical interest as source of stem cells due to their great plasticity and immunomodulatory paracrine activities, even though GO bio-mimetic effects still remain unknown. To this aim, GO-functionalized glass coverslips have been used for AECs culture. The results demonstrated how GO-coating is able to induce and accelerate the Epithelial-Mesenchymal Transition (EMT), in a process mediated by the intracellular activation of TGFß1-SMAD2/3 signaling pathway. The trans-differentiation towards mesenchymal phenotype provides AECs of migratory ability and substantially changes the pattern of cytokines secretion upon inflammatory stimulus. Indeed, GO-exposed AECs enhance their pro-inflammatory interleukins production thus inducing a more efficient activation of macrophages and, at the same time, by slightly reducing their inhibitory action on peripheral blood mononuclear cells proliferation. Therefore, the adhesion of AECs on GO-functionalized surfaces might contribute to the generation of a tailored microenvironment useful to face both the phases of the inflammation, thereby fostering the regenerative process.