Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Magn Reson Med ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38650351

RESUMO

PURPOSE: Widening the availability of fetal MRI with fully automatic real-time planning of radiological brain planes on 0.55T MRI. METHODS: Deep learning-based detection of key brain landmarks on a whole-uterus echo planar imaging scan enables the subsequent fully automatic planning of the radiological single-shot Turbo Spin Echo acquisitions. The landmark detection pipeline was trained on over 120 datasets from varying field strength, echo times, and resolutions and quantitatively evaluated. The entire automatic planning solution was tested prospectively in nine fetal subjects between 20 and 37 weeks. A comprehensive evaluation of all steps, the distance between manual and automatic landmarks, the planning quality, and the resulting image quality was conducted. RESULTS: Prospective automatic planning was performed in real-time without latency in all subjects. The landmark detection accuracy was 4.2 ± $$ \pm $$ 2.6 mm for the fetal eyes and 6.5 ± $$ \pm $$ 3.2 for the cerebellum, planning quality was 2.4/3 (compared to 2.6/3 for manual planning) and diagnostic image quality was 2.2 compared to 2.1 for manual planning. CONCLUSIONS: Real-time automatic planning of all three key fetal brain planes was successfully achieved and will pave the way toward simplifying the acquisition of fetal MRI thereby widening the availability of this modality in nonspecialist centers.

2.
Sci Rep ; 14(1): 6637, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503833

RESUMO

Structural fetal body MRI provides true 3D information required for volumetry of fetal organs. However, current clinical and research practice primarily relies on manual slice-wise segmentation of raw T2-weighted stacks, which is time consuming, subject to inter- and intra-observer bias and affected by motion-corruption. Furthermore, there are no existing standard guidelines defining a universal approach to parcellation of fetal organs. This work produces the first parcellation protocol of the fetal body organs for motion-corrected 3D fetal body MRI. It includes 10 organ ROIs relevant to fetal quantitative volumetry studies. We also introduce the first population-averaged T2w MRI atlas of the fetal body. The protocol was used as a basis for training of a neural network for automated organ segmentation. It showed robust performance for different gestational ages. This solution minimises the need for manual editing and significantly reduces time. The general feasibility of the proposed pipeline was also assessed by analysis of organ growth charts created from automated parcellations of 91 normal control 3T MRI datasets that showed expected increase in volumetry during 22-38 weeks gestational age range.


Assuntos
Feto , Processamento de Imagem Assistida por Computador , Gravidez , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Feto/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Idade Gestacional , Cuidado Pré-Natal
3.
BMC Med Imaging ; 24(1): 52, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429666

RESUMO

This study explores the potential of 3D Slice-to-Volume Registration (SVR) motion-corrected fetal MRI for craniofacial assessment, traditionally used only for fetal brain analysis. In addition, we present the first description of an automated pipeline based on 3D Attention UNet trained for 3D fetal MRI craniofacial segmentation, followed by surface refinement. Results of 3D printing of selected models are also presented.Qualitative analysis of multiplanar volumes, based on the SVR output and surface segmentations outputs, were assessed with computer and printed models, using standardised protocols that we developed for evaluating image quality and visibility of diagnostic craniofacial features. A test set of 25, postnatally confirmed, Trisomy 21 fetal cases (24-36 weeks gestational age), revealed that 3D reconstructed T2 SVR images provided 66-100% visibility of relevant craniofacial and head structures in the SVR output, and 20-100% and 60-90% anatomical visibility was seen for the baseline and refined 3D computer surface model outputs respectively. Furthermore, 12 of 25 cases, 48%, of refined surface models demonstrated good or excellent overall quality with a further 9 cases, 36%, demonstrating moderate quality to include facial, scalp and external ears. Additional 3D printing of 12 physical real-size models (20-36 weeks gestational age) revealed good/excellent overall quality in all cases and distinguishable features between healthy control cases and cases with confirmed anomalies, with only minor manual adjustments required before 3D printing.Despite varying image quality and data heterogeneity, 3D T2w SVR reconstructions and models provided sufficient resolution for the subjective characterisation of subtle craniofacial features. We also contributed a publicly accessible online 3D T2w MRI atlas of the fetal head, validated for accurate representation of normal fetal anatomy.Future research will focus on quantitative analysis, optimizing the pipeline, and exploring diagnostic, counselling, and educational applications in fetal craniofacial assessment.


Assuntos
Feto , Imageamento por Ressonância Magnética , Humanos , Estudos de Viabilidade , Feto/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Idade Gestacional , Imageamento Tridimensional/métodos , Couro Cabeludo , Processamento de Imagem Assistida por Computador/métodos
4.
Hypertension ; 81(4): 836-847, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38314606

RESUMO

BACKGROUND: Preeclampsia is a multiorgan disease of pregnancy that has short- and long-term implications for the woman and fetus, whose immediate impact is poorly understood. We present a novel multiorgan approach to magnetic resonance imaging (MRI) investigation of preeclampsia, with the acquisition of maternal cardiac, placental, and fetal brain anatomic and functional imaging. METHODS: An observational study was performed recruiting 3 groups of pregnant women: those with preeclampsia, chronic hypertension, or no medical complications. All women underwent a cardiac MRI, and pregnant women underwent a placental-fetal MRI. Cardiac analysis for structural, morphological, and flow data were undertaken; placenta and fetal brain volumetric and T2* (which describes relative tissue oxygenation) data were obtained. All results were corrected for gestational age. A nonpregnant cohort was identified for inclusion in the statistical shape analysis. RESULTS: Seventy-eight MRIs were obtained during pregnancy. Cardiac MRI analysis demonstrated higher left ventricular mass in preeclampsia with 3-dimensional modeling revealing additional specific characteristics of eccentricity and outflow track remodeling. Pregnancies affected by preeclampsia demonstrated lower placental and fetal brain T2*. Within the preeclampsia group, 23% placental T2* results were consistent with controls, these were the only cases with normal placental histopathology. Fetal brain T2* results were consistent with normal controls in 31% of cases. CONCLUSIONS: We present the first holistic assessment of the immediate implications of preeclampsia on maternal heart, placenta, and fetal brain. As well as having potential clinical implications for the risk stratification and management of women with preeclampsia, this gives an insight into the disease mechanism.


Assuntos
Placenta , Pré-Eclâmpsia , Feminino , Gravidez , Humanos , Placenta/patologia , Estudos de Coortes , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética
6.
J Pediatr ; 266: 113838, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37995930

RESUMO

OBJECTIVE: To examine the relationship between perioperative brain injury and neurodevelopment during early childhood in patients with severe congenital heart disease (CHD). STUDY DESIGN: One hundred and seventy children with CHD and born at term who required cardiopulmonary bypass surgery in the first 6 weeks after birth were recruited from 3 European centers and underwent preoperative and postoperative brain MRIs. Uniform description of imaging findings was performed and an overall brain injury score was created, based on the sum of the worst preoperative or postoperative brain injury subscores. Motor and cognitive outcomes were assessed with the Bayley Scales of Infant and Toddler Development Third Edition at 12 to 30 months of age. The relationship between brain injury score and clinical outcome was assessed using multiple linear regression analysis, adjusting for CHD severity, length of hospital stay (LOS), socioeconomic status (SES), and age at follow-up. RESULTS: Neither the overall brain injury score nor any of the brain injury subscores correlated with motor or cognitive outcome. The number of preoperative white matter lesions was significantly associated with gross motor outcome after correction for multiple testing (P = .013, ß = -0.50). SES was independently associated with cognitive outcome (P < .001, ß = 0.26), and LOS with motor outcome (P < .001, ß = -0.35). CONCLUSION: Preoperative white matter lesions appear to be the most predictive MRI marker for adverse early childhood gross motor outcome in this large European cohort of infants with severe CHD. LOS as a marker of disease severity, and SES influence outcome and future intervention trials need to address these risk factors.


Assuntos
Lesões Encefálicas , Cardiopatias Congênitas , Lactente , Humanos , Pré-Escolar , Encéfalo/patologia , Lesões Encefálicas/etiologia , Lesões Encefálicas/patologia , Cardiopatias Congênitas/cirurgia , Cardiopatias Congênitas/complicações , Imageamento por Ressonância Magnética , Fatores de Risco
7.
EClinicalMedicine ; 65: 102253, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38106560

RESUMO

Background: Magnetic Resonance (MR) imaging is key for investigation of suspected newborn brain abnormalities. Access is limited in low-resource settings and challenging in infants needing intensive care. Portable ultralow field (ULF) MRI is showing promise in bedside adult brain imaging. Use in infants and children has been limited as brain-tissue composition differences necessitate sequence modification. The aim of this study was to develop neonatal-specific ULF structural sequences and test these across a range of gestational maturities and pathologies to inform future validation studies. Methods: Prospective cohort study within a UK neonatal specialist referral centre. Infants undergoing 3T MRI were recruited for paired ULF (64mT) portable MRI by convenience sampling from the neonatal unit and post-natal ward. Key inclusion criteria: 1) Infants with risk or suspicion of brain abnormality, or 2) preterm and term infants without suspicion of major genetic, chromosomal or neurological abnormality. Exclusions: presence of contra-indication for MR scanning. ULF sequence parameters were optimised for neonatal brain-tissues by iterative and explorative design. Neuroanatomic and pathologic features were compared by unblinded review, informing optimisation of subsequent sequence generations in a step-wise manner. Main outcome: visual identification of healthy and abnormal brain tissues/structures. ULF MR spectroscopy, diffusion, susceptibility weighted imaging, arteriography, and venography require pre-clinical technical development and have not been tested. Findings: Between September 23, 2021 and October 25, 2022, 102 paired scans were acquired in 87 infants; 1.17 paired scans per infant. Median age 9 days, median postmenstrual age 40+2 weeks (range: 31+3-53+4). Infants had a range of intensive care requirements. No adverse events observed. Optimised ULF sequences can visualise key neuroanatomy and brain abnormalities. In finalised neonatal sequences: T2w imaging distinguished grey and white matter (7/7 infants), ventricles (7/7), pituitary tissue (5/7), corpus callosum (7/7) and optic nerves (7/7). Signal congruence was seen within the posterior limb of the internal capsule in 10/11 infants on finalised T1w scans. In addition, brain abnormalities visualised on ULF optimised sequences have similar MR signal patterns to 3T imaging, including injury secondary to infarction (6/6 infants on T2w scans), hypoxia-ischaemia (abnormal signal in basal ganglia, thalami and white matter 2/2 infants on T2w scans, cortical highlighting 1/1 infant on T1w scan), and congenital malformations: polymicrogyria 3/3, absent corpus callosum 2/2, and vermian hypoplasia 3/3 infants on T2w scans. Sequences are susceptible to motion corruption, noise, and ULF artefact. Non-identified pathologies were small or subtle. Interpretation: On unblinded review, optimised portable MR can provide sufficient contrast, signal, and resolution for neuroanatomical identification and detection of a range of clinically important abnormalities. Blinded validation studies are now warranted. Funding: The Bill and Melinda Gates Foundation, the MRC, the Wellcome/EPSRC Centre for Medical Engineering, the MRC Centre for Neurodevelopmental Disorders, and the National Institute for Health Research (NIHR) Biomedical Research Centres based at Guy's and St Thomas' and South London & Maudsley NHS Foundation Trusts and King's College London.

8.
Radiology ; 309(1): e223050, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37847139

RESUMO

Background The benefits of using low-field-strength fetal MRI to evaluate antenatal development include reduced image artifacts, increased comfort, larger bore size, and potentially reduced costs, but studies about fetal low-field-strength MRI are lacking. Purpose To evaluate the reliability and feasibility of low-field-strength fetal MRI to assess anatomic and functional measures in pregnant participants using a commercially available 0.55-T MRI scanner and a comprehensive 20-minute protocol. Materials and Methods This prospective study was performed at a large teaching hospital (St Thomas' Hospital; London, England) from May to November 2022 in healthy pregnant participants and participants with pregnancy-related abnormalities using a commercially available 0.55-T MRI scanner. A 20-minute protocol was acquired including anatomic T2-weighted fast-spin-echo, quantitative T2*, and diffusion sequences. Key measures like biparietal diameter, transcerebellar diameter, lung volume, and cervical length were evaluated by two radiologists and an MRI-experienced obstetrician. Functional organ-specific mean values were given. Comparison was performed with existing published values and higher-field MRI using linear regression, interobserver correlation, and Bland-Altman plots. Results A total of 79 fetal MRI examinations were performed (mean gestational age, 29.4 weeks ± 5.5 [SD] [age range, 17.6-39.3 weeks]; maternal age, 34.4 years ± 5.3 [age range, 18.4-45.5 years]) in 47 healthy pregnant participants (control participants) and in 32 participants with pregnancy-related abnormalities. The key anatomic two-dimensional measures for the 47 healthy participants agreed with large cross-sectional 1.5-T and 3-T control studies. The interobserver correlations for the biparietal diameter in the first 40 consecutive scans were 0.96 (95% CI: 0.7, 0.99; P = .002) for abnormalities and 0.93 (95% CI: 0.86, 0.97; P < .001) for control participants. Functional features, including placental and brain T2* and placental apparent diffusion coefficient values, strongly correlated with gestational age (mean placental T2* in the control participants: 5.2 msec of decay per week; R2 = 0.66; mean T2* at 30 weeks, 176.6 msec; P < .001). Conclusion The 20-minute low-field-strength fetal MRI examination protocol was capable of producing reliable structural and functional measures of the fetus and placenta in pregnancy. Clinical trial registration no. REC 21/LO/0742 © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Gowland in this issue.


Assuntos
Imageamento por Ressonância Magnética , Placenta , Adolescente , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Gravidez , Adulto Jovem , Estudos Transversais , Estudos de Viabilidade , Feto , Imageamento por Ressonância Magnética/métodos , Estudos Prospectivos , Reprodutibilidade dos Testes
9.
Artigo em Inglês | MEDLINE | ID: mdl-37751993

RESUMO

The placenta contains valuable clinical information that is linked to fetal development, neonatal morbidity and mortality, and future health outcomes. Both gross inspection and histopathological examination of the placenta may identify intrinsic or secondary placental lesions, which can contribute directly to adverse neonatal outcomes or indicate the presence of an unfavourable intrauterine environment. Placental examination therefore forms an essential component of the care of high-risk neonates and at perinatal post-mortem examination. In this article, we describe the clinical value of placental examination for paediatricians and perinatal clinicians. We discuss common pathological findings on general inspection of the placenta with photographic examples and provide an overview of the placental pathological examination, including how to interpret key findings. We also address the medico-legal and financial implications of placental examinations and describe current and future clinical considerations for clinicians in regard to placental examination.

10.
ArXiv ; 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37608939

RESUMO

Fetal Magnetic Resonance Imaging at low field strengths is emerging as an exciting direction in perinatal health. Clinical low field (0.55T) scanners are beneficial for fetal imaging due to their reduced susceptibility-induced artefacts, increased T2* values, and wider bore (widening access for the increasingly obese pregnant population). However, the lack of standard automated image processing tools such as segmentation and reconstruction hampers wider clinical use. In this study, we introduce a semi-automatic pipeline using quantitative MRI for the fetal body at low field strength resulting in fast and detailed quantitative T2* relaxometry analysis of all major fetal body organs. Multi-echo dynamic sequences of the fetal body were acquired and reconstructed into a single high-resolution volume using deformable slice-to-volume reconstruction, generating both structural and quantitative T2* 3D volumes. A neural network trained using a semi-supervised approach was created to automatically segment these fetal body 3D volumes into ten different organs (resulting in dice values > 0.74 for 8 out of 10 organs). The T2* values revealed a strong relationship with GA in the lungs, liver, and kidney parenchyma (R2 >0.5). This pipeline was used successfully for a wide range of GAs (17-40 weeks), and is robust to motion artefacts. Low field fetal MRI can be used to perform advanced MRI analysis, and is a viable option for clinical scanning.

11.
medRxiv ; 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37398121

RESUMO

Structural fetal body MRI provides true 3D information required for volumetry of fetal organs. However, current clinical and research practice primarily relies on manual slice-wise segmentation of raw T2-weighted stacks, which is time consuming, subject to inter- and intra-observer bias and affected by motion-corruption. Furthermore, there are no existing standard guidelines defining a universal approach to parcellation of fetal organs. This work produces the first parcellation protocol of the fetal body organs for motion-corrected 3D fetal body MRI. It includes 10 organ ROIs relevant to fetal quantitative volumetry studies. We also introduce the first population-averaged T2w MRI atlas of the fetal body. The protocol was used as a basis for training of a neural network for automated organ segmentation. It showed robust performance for different gestational ages. This solution minimises the need for manual editing and significantly reduces time. The general feasibility of the proposed pipeline was also assessed by analysis of organ growth charts created from automated parcellations of 91 normal control 3T MRI datasets that showed expected increase in volumetry during 22-38 weeks gestational age range. In addition, the results of comparison between 60 normal and 12 fetal growth restriction datasets revealed significant differences in organ volumes.

12.
J Am Heart Assoc ; 12(14): e028565, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37421268

RESUMO

Background Infants with congenital heart disease (CHD) are at risk of neurodevelopmental impairments, which may be associated with impaired brain growth. We characterized how perioperative brain growth in infants with CHD deviates from typical trajectories and assessed the relationship between individualized perioperative brain growth and clinical risk factors. Methods and Results A total of 36 infants with CHD underwent preoperative and postoperative brain magnetic resonance imaging. Regional brain volumes were extracted. Normative volumetric development curves were generated using data from 219 healthy infants. Z-scores, representing the degree of positive or negative deviation from the normative mean for age and sex, were calculated for regional brain volumes from each infant with CHD before and after surgery. The degree of Z-score change was correlated with clinical risk factors. Perioperative growth was impaired across the brain, and it was associated with longer postoperative intensive care stay (false discovery rate P<0.05). Higher preoperative creatinine levels were associated with impaired brainstem, caudate nuclei, and right thalamus growth (all false discovery rate P=0.033). Older postnatal age at surgery was associated with impaired brainstem and right lentiform growth (both false discovery rate P=0.042). Longer cardiopulmonary bypass duration was associated with impaired brainstem and right caudate growth (false discovery rate P<0.027). Conclusions Infants with CHD can have impaired brain growth in the immediate postoperative period, the degree of which associates with postoperative intensive care duration. Brainstem growth appears particularly vulnerable to perioperative clinical course, whereas impaired deep gray matter growth was associated with multiple clinical risk factors, possibly reflecting vulnerability of these regions to short- and long-term hypoxic injury.


Assuntos
Encéfalo , Cardiopatias Congênitas , Humanos , Lactente , Encéfalo/patologia , Cardiopatias Congênitas/complicações , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/cirurgia , Imageamento por Ressonância Magnética/métodos , Fatores de Risco
13.
Commun Biol ; 6(1): 661, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349403

RESUMO

A key feature of the fetal period is the rapid emergence of organised patterns of spontaneous brain activity. However, characterising this process in utero using functional MRI is inherently challenging and requires analytical methods which can capture the constituent developmental transformations. Here, we introduce a novel analytical framework, termed "maturational networks" (matnets), that achieves this by modelling functional networks as an emerging property of the developing brain. Compared to standard network analysis methods that assume consistent patterns of connectivity across development, our method incorporates age-related changes in connectivity directly into network estimation. We test its performance in a large neonatal sample, finding that the matnets approach characterises adult-like features of functional network architecture with a greater specificity than a standard group-ICA approach; for example, our approach is able to identify a nearly complete default mode network. In the in-utero brain, matnets enables us to reveal the richness of emerging functional connections and the hierarchy of their maturational relationships with remarkable anatomical specificity. We show that the associative areas play a central role within prenatal functional architecture, therefore indicating that functional connections of high-level associative areas start emerging prior to exposure to the extra-utero environment.


Assuntos
Mapeamento Encefálico , Encéfalo , Adulto , Gravidez , Feminino , Recém-Nascido , Humanos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Feto , Imageamento por Ressonância Magnética
14.
bioRxiv ; 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37131820

RESUMO

Fetal MRI is widely used for quantitative brain volumetry studies. However, currently, there is a lack of universally accepted protocols for fetal brain parcellation and segmentation. Published clinical studies tend to use different segmentation approaches that also reportedly require significant amounts of time-consuming manual refinement. In this work, we propose to address this challenge by developing a new robust deep learning-based fetal brain segmentation pipeline for 3D T2w motion corrected brain images. At first, we defined a new refined brain tissue parcellation protocol with 19 regions-of-interest using the new fetal brain MRI atlas from the Developing Human Connectome Project. This protocol design was based on evidence from histological brain atlases, clear visibility of the structures in individual subject 3D T2w images and the clinical relevance to quantitative studies. It was then used as a basis for developing an automated deep learning brain tissue parcellation pipeline trained on 360 fetal MRI datasets with different acquisition parameters using semi-supervised approach with manually refined labels propagated from the atlas. The pipeline demonstrated robust performance for different acquisition protocols and GA ranges. Analysis of tissue volumetry for 390 normal participants (21-38 weeks gestational age range), scanned with three different acquisition protocols, did not reveal significant differences for major structures in the growth charts. Only minor errors were present in < 15% of cases thus significantly reducing the need for manual refinement. In addition, quantitative comparison between 65 fetuses with ventriculomegaly and 60 normal control cases were in agreement with the findings reported in our earlier work based on manual segmentations. These preliminary results support the feasibility of the proposed atlas-based deep learning approach for large-scale volumetric analysis. The created fetal brain volumetry centiles and a docker with the proposed pipeline are publicly available online at https://hub.docker.com/r/fetalsvrtk/segmentation (tag brain_bounti_tissue).

15.
medRxiv ; 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37163073

RESUMO

Background: Pre-eclampsia is a multiorgan disease of pregnancy that has short- and long-term implications for the woman and fetus, whose immediate impact is poorly understood. We present a novel multi-system approach to MRI investigation of pre-eclampsia, with acquisition of maternal cardiac, placental, and fetal brain anatomical and functional imaging. Methods: A prospective study was carried out recruiting pregnant women with pre-eclampsia, chronic hypertension, or no medical complications, and a non-pregnant female cohort. All women underwent a cardiac MRI, and pregnant women underwent a fetal-placental MRI. Cardiac analysis for structural, morphological and flow data was undertaken; placenta and fetal brain volumetric and T2* data were obtained. All results were corrected for gestational age. Results: Seventy-eight MRIs were obtained during pregnancy. Pregnancies affected by pre-eclampsia demonstrated lower placental and fetal brain T2*. Within the pre-eclampsia group, three placental T2* results were within the normal range, these were the only cases with normal placental histopathology. Similarly, three fetal brain T2* results were within the normal range; these cases had no evidence of cerebral redistribution on fetal Dopplers. Cardiac MRI analysis demonstrated higher left ventricular mass in pre-eclampsia with 3D modelling revealing additional specific characteristics of eccentricity and outflow track remodelling. Conclusions: We present the first holistic assessment of the immediate implications of pre-eclampsia on the placenta, maternal heart, and fetal brain. As well as having potential clinical implications for the risk-stratification and management of women with pre-eclampsia, this gives an insight into disease mechanism.

16.
IDCases ; 32: e01796, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37193002

RESUMO

We report an important case of periventricular white matter damage in a 1-month-old infant, demonstrated on high quality structural (T2) and diffusion weighted magnetic resonance imaging. The infant was born at term following an uneventful pregnancy and discharged home shortly after, but was brought to the paediatric emergency department five days after birth with seizures and respiratory distress, testing positive for COVID-19 infection on PCR. These images highlight the need to consider brain MRI in all infants with symptomatic SARS-Cov-2 infection, and show how this infection can lead to extensive white matter damage in the context of multisystem inflammation.

17.
Cereb Cortex ; 33(14): 8921-8941, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37254801

RESUMO

Down syndrome (DS) is the most common genetic cause of intellectual disability with a wide range of neurodevelopmental outcomes. To date, there have been very few in vivo neuroimaging studies of the neonatal brain in DS. In this study we used a cross-sectional sample of 493 preterm- to term-born control neonates from the developing Human Connectome Project to perform normative modeling of regional brain tissue volumes from 32 to 46 weeks postmenstrual age, accounting for sex and age variables. Deviation from the normative mean was quantified in 25 neonates with DS with postnatally confirmed karyotypes from the Early Brain Imaging in DS study. Here, we provide the first comprehensive volumetric phenotyping of the neonatal brain in DS, which is characterized by significantly reduced whole brain, cerebral white matter, and cerebellar volumes; reduced relative frontal and occipital lobar volumes, in contrast with enlarged relative temporal and parietal lobar volumes; enlarged relative deep gray matter volume (particularly the lentiform nuclei); and enlargement of the lateral ventricles, amongst other features. In future, the ability to assess phenotypic severity at the neonatal stage may help guide early interventions and, ultimately, help improve neurodevelopmental outcomes in children with DS.


Assuntos
Síndrome de Down , Substância Branca , Recém-Nascido , Criança , Humanos , Síndrome de Down/diagnóstico por imagem , Estudos Transversais , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
18.
Elife ; 122023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37010273

RESUMO

The development of connectivity between the thalamus and maturing cortex is a fundamental process in the second half of human gestation, establishing the neural circuits that are the basis for several important brain functions. In this study, we acquired high-resolution in utero diffusion magnetic resonance imaging (MRI) from 140 fetuses as part of the Developing Human Connectome Project, to examine the emergence of thalamocortical white matter over the second to third trimester. We delineate developing thalamocortical pathways and parcellate the fetal thalamus according to its cortical connectivity using diffusion tractography. We then quantify microstructural tissue components along the tracts in fetal compartments that are critical substrates for white matter maturation, such as the subplate and intermediate zone. We identify patterns of change in the diffusion metrics that reflect critical neurobiological transitions occurring in the second to third trimester, such as the disassembly of radial glial scaffolding and the lamination of the cortical plate. These maturational trajectories of MR signal in transient fetal compartments provide a normative reference to complement histological knowledge, facilitating future studies to establish how developmental disruptions in these regions contribute to pathophysiology.


Assuntos
Conectoma , Substância Branca , Humanos , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão , Feto , Vias Neurais/fisiologia , Imageamento por Ressonância Magnética , Encéfalo
19.
Nat Commun ; 14(1): 1550, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36941265

RESUMO

Fetal ventriculomegaly is the most common antenatally-diagnosed brain abnormality. Imaging studies in antenatal isolated ventriculomegaly demonstrate enlarged ventricles and cortical overgrowth which are also present in children with autism-spectrum disorder/condition (ASD). We investigate the presence of ASD traits in a cohort of children (n = 24 [20 males/4 females]) with isolated fetal ventriculomegaly, compared with 10 controls (n = 10 [6 males/4 females]). Neurodevelopmental outcome at school age included IQ, ASD traits (ADOS-2), sustained attention, neurological functioning, behaviour, executive function, sensory processing, co-ordination, and adaptive behaviours. Pre-school language development was assessed at 2 years. 37.5% of children, all male, in the ventriculomegaly cohort scored above threshold for autism/ASD classification. Pre-school language delay predicted an ADOS-2 autism/ASD classification with 73.3% specificity/66.7% sensitivity. Greater pre-school language delay was associated with more ASD symptoms. In this study, the neurodevelopment of children with isolated fetal ventriculomegaly, associated with altered cortical development, includes ASD traits, difficulties in sustained attention, working memory and sensation-seeking behaviours.


Assuntos
Transtorno do Espectro Autista , Hidrocefalia , Transtornos do Desenvolvimento da Linguagem , Humanos , Masculino , Criança , Pré-Escolar , Feminino , Gravidez , Hidrocefalia/diagnóstico por imagem , Fenótipo , Feto
20.
Br J Radiol ; 96(1147): 20220071, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35834425

RESUMO

Foetal MRI is a complementary imaging method to antenatal ultrasound. It provides advanced information for detection and characterisation of foetal brain and body anomalies. Even though modern single shot sequences allow fast acquisition of 2D slices with high in-plane image quality, foetal MRI is intrinsically corrupted by motion. Foetal motion leads to loss of structural continuity and corrupted 3D volumetric information in stacks of slices. Furthermore, the arbitrary and constantly changing position of the foetus requires dynamic readjustment of acquisition planes during scanning.


Assuntos
Feto , Imageamento por Ressonância Magnética , Humanos , Feminino , Gravidez , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Feto/diagnóstico por imagem , Movimento (Física) , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Encéfalo , Artefatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA