RESUMO
Triple-negative breast cancer (TNBC), characterized by high invasiveness, is associated with poor prognosis and elevated mortality rates. Despite the development of effective therapeutic targets for TNBC, systemic chemotherapy and radiotherapy (RdT) remain prevalent treatment modalities. One notable challenge of RdT is the acquisition of radioresistance, which poses a significant obstacle in achieving optimal treatment response. Compelling evidence implicates non-coding RNAs (ncRNAs), gene expression regulators, in the development of radioresistance. This systematic review focuses on describing the role, association, and/or involvement of ncRNAs in modulating radioresponse in TNBC. In adhrence to the PRISMA guidelines, an extensive and comprehensive search was conducted across four databases using carefully selected entry terms. Following the evaluation of the studies based on predefined inclusion and exclusion criteria, a refined selection of 37 original research articles published up to October 2023 was obtained. In total, 33 different ncRNAs, including lncRNAs, miRNAs, and circRNAs, were identified to be associated with radiation response impacting diverse molecular mechanisms, primarily the regulation of cell death and DNA damage repair. The findings highlighted in this review demonstrate the critical roles and the intricate network of ncRNAs that significantly modulates TNBC's responsiveness to radiation. The understanding of these underlying mechanisms offers potential for the early identification of non-responders and patients prone to radioresistance during RdT, ultimately improving TNBC survival outcomes.
Assuntos
RNA não Traduzido , Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Tolerância a Radiação/genética , RNA não Traduzido/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/radioterapiaRESUMO
MiRNAs, a class of non-coding RNA molecules, have emerged as critical modulators of telomere length and telomerase activity by finely tuning the expression of target genes (and not gene targets) within signaling pathways involved in telomere homeostasis. The primary objective of this systematic review was to compile and synthesize the existing body of knowledge on the role, association, and involvement of miRNAs in telomere length. Additionally, the review explored the regulation, function, and activation mechanism of the human telomerase reverse transcriptase (hTERT) gene and telomerase activity in tumor cells. A comprehensive analysis of 47 selected articles revealed 40 distinct miRNAs involved in these processes. These miRNAs were shown to exert their function, in both clinical cases and cell line models, either directly or indirectly, regulating hTERT and telomerase activity through distinct molecular mechanisms. The regulatory roles of these miRNAs significantly affected major cancer phenotypes, with outcomes largely dependent on the tissue type and the cellular actions within the tumor cells, whereby they functioned as oncogenes or tumor suppressors. These findings strongly support the pivotal role of miRNAs in modulating telomere length and telomerase activity, thereby contributing to the intricate and complex regulation of telomere homeostasis in tumor cells. Moreover, they emphasize the potential of targeting miRNAs and key regulatory genes as therapeutic strategies to disrupt cancer cell growth and promote senescence, offering promising avenues for novel cancer treatments.