Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
J Orthop Res ; 42(5): 1033-1044, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38044472

RESUMO

High fat diets overwhelm the physiological mechanisms for absorption, storage, and utilization of triglycerides (TG); consequently TG, TG-rich lipoproteins (TGRL), and TGRL remnants accumulate, circulate systemically, producing dyslipidemia. This associates with, or is causative for increased atherosclerotic cardiovascular risk, ischemic stroke, fatty liver disease, and pancreatitis. TGRL hydrolysis by endothelial surface-bound lipoprotein lipase (LPL) generates metabolites like free fatty acids which have proinflammatory properties. While osteoblasts utilize fatty acids as an energy source, dyslipidemia is associated with negative effects on the skeleton. In this study we investigated the effects of TGRL lipolysis products (TGRL-LP) on expression of a stress responsive transcription factor, termed activating transcription factor 3 (ATF3), reactive oxygen species (ROS), ATF3 target genes, and angiopoietin-like 4 (Angptl4) in osteoblasts. As ATF3 negatively associates with osteoblast differentiation, we also investigated the skeletal effects of global ATF3 deletion in mice. TGRL-LP increased expression of Atf3, proinflammatory proteins Ptgs2 and IL-6, and induced ROS in MC3T3-E1 osteoblastic cells. Angptl4 is an endogenous inhibitor of LPL which was transcriptionally induced by TGRL-LP, while recombinant Angptl4 prevented TG-driven Atf3 induction. Atf3 global knockout male mice demonstrated increased trabecular and cortical microarchitectural parameters. In summary, we find that TGRL-LP induce osteoblastic cell stress as evidenced by expression of ATF3, which may contribute to the negative impact of dyslipidemia in the skeleton. Further, concomitant induction of Angptl4 in osteoblasts might play a protective role by reducing local lipolysis.


Assuntos
Dislipidemias , Lipólise , Masculino , Animais , Camundongos , Lipólise/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Proteínas de Choque Térmico/metabolismo , Triglicerídeos/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo , Osteoblastos/metabolismo
2.
Nutrients ; 15(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36904213

RESUMO

Oxylipins are the oxidation products of polyunsaturated fatty acids and have been implicated in neurodegenerative disorders, including dementia. Soluble epoxide hydrolase (sEH) converts epoxy-fatty acids to their corresponding diols, is found in the brain, and its inhibition is a treatment target for dementia. In this study, male and female C57Bl/6J mice were treated with an sEH inhibitor (sEHI), trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (t-AUCB), for 12 weeks to comprehensively study the effect of sEH inhibition on the brain oxylipin profile, and modulation by sex. Ultra-high-performance liquid chromatography-tandem mass spectrometry was used to measure the profile of 53 free oxylipins in the brain. More oxylipins were modified by the inhibitor in males than in females (19 versus 3, respectively) and favored a more neuroprotective profile. Most were downstream of lipoxygenase and cytochrome p450 in males, and cyclooxygenase and lipoxygenase in females. The inhibitor-associated oxylipin changes were unrelated to serum insulin, glucose, cholesterol, or female estrous cycle. The inhibitor affected behavior and cognitive function as measured by open field and Y-maze tests in males, but not females. These findings are novel and important to our understanding of sexual dimorphism in the brain's response to sEHI and may help inform sex-specific treatment targets.


Assuntos
Demência , Oxilipinas , Camundongos , Animais , Feminino , Masculino , Epóxido Hidrolases/metabolismo , Encéfalo/metabolismo , Lipoxigenases , Inibidores Enzimáticos/farmacologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-36244214

RESUMO

BACKGROUND: Oxylipins have been implicated in many biological processes and diseases. Dysregulation of cerebral lipid homeostasis and altered lipid metabolites have been associated with the onset and progression of dementia. Although most dietary interventions have focused on modulation of dietary fats, the impact of a high sucrose diet on the brain oxylipin profile is unknown. METHODS: Male and female C57BL/6J mice were fed a high sucrose diet (HSD, 34%) in comparison to a control low sucrose diet (LSD, 12%) for 12 weeks beginning at 20 weeks of age. The profile of 53 free oxylipins was then measured in brain by ultra-high performance liquid chromatography tandem mass spectrometry. Serum glucose and insulin were measured enzymatically. We first assessed whether there were any effects of the diet on the brain oxylipin profile, then assessed for sex differences. RESULTS: There were no differences in fasting serum glucose between the sexes for mice fed a HSD or in fasting serum insulin levels for mice on either diet. The HSD altered the brain oxylipin profile in both sexes in distinctly different patterns: there was a reduction in three oxylipins (by 47-61%) and an increase in one oxylipin (16%) all downstream of lipoxygenase enzymes in males and a reduction in eight oxylipins (by 14-94%) mostly downstream of cyclooxygenase activity in females. 9-oxo-ODE and 6-trans-LTB4 were most influential in the separation of the oxylipin profiles by diet in male mice, whereas 5-HEPE and 12-HEPE were most influential in the separation by diet in female mice. Oxylipins 9­hydroxy-eicosatetraenoic acid (HETE), 11-HETE, and 15-HETE were higher in the brains of females, regardless of diet. CONCLUSION: A HSD substantially changes brain oxylipins in a distinctly sexually dimorphic manner. Results are discussed in terms of potential mechanisms and links to metabolic disease. Sex and diet effects on brain oxylipin composition may provide future targets for the management of neuroinflammatory diseases, such as dementia.


Assuntos
Demência , Insulinas , Animais , Feminino , Masculino , Camundongos , Oxilipinas , Sacarose , Camundongos Endogâmicos C57BL , Dieta , Encéfalo/metabolismo , Insulinas/metabolismo , Glucose/metabolismo
4.
J Appl Physiol (1985) ; 130(1): 124-138, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33211595

RESUMO

Diet-induced obesity (DIO) is associated with glucose intolerance, insulin resistance (IR), and an increase in intramyocellular lipids (IMCL), which may lead to disturbances in glucose and protein metabolism. To this matter, it has been speculated that chronic obesity and elevated IMCL may contribute to skeletal muscle loss and deficits in muscle function and growth capacity. Thus, we hypothesized that diets with elevated fat content would induce obesity and insulin resistance, leading to a decrease in muscle mass and an attenuated growth response to increased external loading in adult male mice. Male C57BL/6 mice (8 wk of age) were subjected to five different diets, namely, chow, low-dat-diet (LFD), high-fat-diet (HFD), sucrose, or Western diet, for 28 wk. At 25 wk, HFD and Western diets induced a 60.4% and 35.9% increase in body weight, respectively. Interestingly, HFD, but not Western or sucrose, induced glucose intolerance and insulin resistance. Measurement of isometric torque (ankle plantar flexor and ankle dorsiflexor muscles) revealed no effect of DIO on muscle function. At 28 wk of intervention, muscle area and protein synthesis were similar across all diet groups, despite insulin resistance and increased IMCL being observed in HFD and Western diet groups. In response to 30 days of functional overload, an attenuated growth response was observed in only the HFD group. Nevertheless, our results show that DIO alone is not sufficient to induce muscle atrophy and contractile dysfunction in adult male C57BL/6 mice. However, diet composition does have an impact on muscle growth in response to increased external loading.NEW & NOTEWORTHY The effects of diet-induced obesity on skeletal muscle mass are complex and dependent on diet composition and diet duration. The present study results show that chronic exposure to high levels of fatty acids does not affect muscle mass, contractile function, or protein synthesis in obese C57BL/6 mice compared with the consumption of chow. Obesity did result in a delay in load-induced growth; however, only a 45% HFD resulted in attenuated growth following 30 days of functional overload.


Assuntos
Intolerância à Glucose , Resistência à Insulina , Animais , Dieta Hiperlipídica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético , Obesidade
5.
Biochim Biophys Acta Biomembr ; 1863(3): 183535, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33358851

RESUMO

To better understand how lipoproteins interact and enter endothelium and participate in cellular processes, we investigated preferential lipid partitioning of triglyceride rich lipoproteins (TGRL), chylomicrons (CM), low density lipoproteins (LDL), very low density lipoproteins (VLDL) and their lipolysis products using supported phospholipid raft membrane (SPRM) patterns. We prepared SPRM patterns with Texas red labeled phospholipid patterns and Marina blue labeled raft patterns and added Atto-520 labeled lipoproteins (TGRL, CM, VLDL, LDL) and their lipolysis products in separate experiments and characterized these interactions using fluorescence microscopy. We observed that VLDL and LDL preferentially interacted with raft patterns. In contrast the TGRL and lipolysed products of TGRL interacted with both the patterns, slightly elevated preference for raft patterns and CM and its lipolysis products showed greater affinity to phospholipid patterns. The clear preference of VLDL and LDL for raft patterns suggests that these lipoproteins associate with cholesterol and sphingomyelin rich lipid micro-domains during their early interactions with endothelial cells, leading to atherosclerosis.


Assuntos
Colesterol/química , Lipoproteínas/química , Microdomínios da Membrana/química , Fosfolipídeos/química , Esfingomielinas/química , Colesterol/metabolismo , Humanos , Lipoproteínas/metabolismo , Microdomínios da Membrana/metabolismo , Fosfolipídeos/metabolismo , Esfingomielinas/metabolismo
6.
Int J Mol Sci ; 21(21)2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142695

RESUMO

Cardiovascular risk factors and biologic sex play a role in vascular dementia which is characterized by progressive reduction in cognitive function and memory. Yet, we lack understanding about the role sex plays in the molecular mechanisms whereby lipid stress contributes to cognitive decline. Five-week-old low-density lipoprotein deficient (LDL-R -/-) male and female mice and C57BL/6J wild types (WT) were fed a control or Western Diet for 8 weeks. Differential expression of protein coding and non-protein coding genes (DEG) were determined in laser captured hippocampal microvessels using genome-wide microarray, followed by bioinformatic analysis of gene networks, pathways, transcription factors and sex/gender-based analysis (SGBA). Cognitive function was assessed by Y-maze. Bioinformatic analysis revealed more DEGs in females (2412) compared to males (1972). Hierarchical clusters revealed distinctly different sex-specific gene expression profiles irrespective of diet and genotype. There were also fewer and different biologic responses in males compared to females, as well as different cellular pathways and gene networks (favoring greater neuroprotection in females), together with sex-specific transcription factors and non-protein coding RNAs. Hyperlipidemic stress also resulted in less severe cognitive dysfunction in females. This sex-specific pattern of differential hippocampal microvascular RNA expression might provide therapeutic targets for dementia in males and females.


Assuntos
Encéfalo/patologia , Disfunção Cognitiva/etiologia , Demência/etiologia , Lipídeos/toxicidade , Microvasos/patologia , Receptores de LDL/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Demência/metabolismo , Demência/patologia , Dieta Hiperlipídica/efeitos adversos , Feminino , Redes Reguladoras de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microvasos/efeitos dos fármacos , Microvasos/lesões , Microvasos/metabolismo , Fatores Sexuais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
7.
Nutrients ; 12(6)2020 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-32545722

RESUMO

The Western diet (WD) and hyperlipidemia are risk factors for vascular disease, dementia, and cognitive impairment. However, the molecular mechanisms are poorly understood. This pilot study investigated the genomic pathways by which the WD and hyperlipidemia regulate gene expression in brain microvessels. Five-week-old C57BL/6J wild type (WT) control and low-density lipoprotein receptor deficient (LDL-R-/-) male mice were fed the WD for eight weeks. Differential gene expression, gene networks and pathways, transcription factors, and non-protein coding RNAs were evaluated by a genome-wide microarray and bioinformatics analysis of laser-captured hippocampal microvessels. The WD resulted in the differential expression of 1972 genes. Much of the differentially expressed gene (DEG) was attributable to the differential regulation of cell signaling proteins and their transcription factors, approximately 4% was attributable to the differential expression of miRNAs, and 10% was due to other non-protein coding RNAs, primarily long non-coding RNAs (lncRNAs) and small nucleolar RNAs (snoRNAs) not previously described to be modified by the WD. Lipotoxic injury resulted in complex and multilevel molecular regulation of the hippocampal microvasculature involving transcriptional and post-transcriptional regulation and may provide a molecular basis for a better understanding of hyperlipidemia-associated dementia risk.


Assuntos
Dieta Ocidental/efeitos adversos , Expressão Gênica/fisiologia , Hipocampo/irrigação sanguínea , Hiperlipidemias/complicações , Microvasos/metabolismo , Animais , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Projetos Piloto , RNA Nucleolar Pequeno/genética , RNA não Traduzido/análise , RNA não Traduzido/fisiologia , Receptores de LDL/deficiência , Receptores de LDL/genética , Receptores de LDL/fisiologia
8.
J Nutr ; 150(5): 1303-1312, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32040591

RESUMO

BACKGROUND: Metabolic endotoxemia is considered a cause for high-fat diet (HFD)-induced inflammation. However, convincing experimental evidence in humans is scant. OBJECTIVE: We determined whether a HFD or moderately HFD increases LPS and LPS-mediated cytokine production in the postprandial blood (PPB). METHODS: Ninety-eight volunteers (age: 37.3 ± 1.5 y) from the cross-sectional phenotyping study (PS) and 62 volunteers (age: 26.8 ± 1.2 y) from the intervention study (IS) consumed a breakfast containing 60% kcal fat (HF) and 36% kcal fat (moderately HF), respectively. For the IS, only the results from the placebo group are presented. Blood samples were probed for LPS-mediated cytokine production by incubating them with LPS inhibitor polymyxin B (PMB) for 24 h at 37°C besides the Limulus amebocyte lysate (LAL) assay. Repeated-measures ANOVA was used to compare the temporal changes of metabolic profiles and treatment outcomes. RESULTS: At least 87.5% of the plasma LPS measurements in 32 PS volunteers from each time point were below the LAL assay sensitivity (0.002 EU/mL). PMB suppressed IL-1ß (P = 0.035) and IL-6 (P = 0.0487) production in the 3 h PPB of the PS after 24 h incubation at 37°C compared to the vehicle control, suggesting the presence of LPS. However, the amount of LPS did not increase the cytokine concentrations in the 3 h PPB above the fasting concentrations. Such suppression was not detected in the PPB of the IS. Treating whole blood with lipoprotein lipase (LPL) significantly (P < 0.05) increased FFA and cytokine (IL-1ß, IL-6, TNF-α) concentrations in both studies. CONCLUSION: LPS may not be the major cause of postprandial inflammation in healthy adults consuming a moderately HF meal (36% kcal fat, similar to the typical American diet) or a HF meal (60% kcal fat). Plasma FFAs may modulate postprandial inflammation. The prevailing concept of HFD-induced metabolic endotoxemia requires careful re-evaluation. The PS was registered at clinicaltrials.gov as NCT02367287 and the IS as NCT02472171.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Inflamação/sangue , Inflamação/etiologia , Lipopolissacarídeos/sangue , Período Pós-Prandial/fisiologia , Adulto , Desjejum , Estudos Transversais , Citocinas/sangue , Método Duplo-Cego , Ácidos Graxos não Esterificados/sangue , Feminino , Humanos , Lipopolissacarídeos/antagonistas & inibidores , Lipase Lipoproteica/metabolismo , Masculino , Placebos , Polimixina B/farmacologia
9.
Free Radic Biol Med ; 143: 25-46, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31356870

RESUMO

Elevation of blood triglycerides, primarily triglyceride-rich lipoproteins (TGRL), is an independent risk factor for cardiovascular disease and vascular dementia (VaD). Accumulating evidence indicates that both atherosclerosis and VaD are linked to vascular inflammation. However, the role of TGRL in vascular inflammation, which increases risk for VaD, remains largely unknown and its underlying mechanisms are still unclear. We strived to determine the effects of postprandial TGRL exposure on brain microvascular endothelial cells, the potential risk factor of vascular inflammation, resulting in VaD. We showed in Aung et al., J Lipid Res., 2016 that postprandial TGRL lipolysis products (TL) activate mitochondrial reactive oxygen species (ROS) and increase the expression of the stress-responsive protein, activating transcription factor 3 (ATF3), which injures human brain microvascular endothelial cells (HBMECs) in vitro. In this study, we deployed high-throughput sequencing (HTS)-based RNA sequencing methods and mito stress and glycolytic rate assays with an Agilent Seahorse XF analyzer and profiled the differential expression of transcripts, constructed signaling pathways, and measured mitochondrial respiration, ATP production, proton leak, and glycolysis of HBMECs treated with TL. Conclusions: TL potentiate ROS by mitochondria which activate mitochondrial oxidative stress, decrease ATP production, increase mitochondrial proton leak and glycolysis rate, and mitochondria DNA damage. Additionally, CPT1A1 siRNA knockdown suppresses oxidative stress and prevents mitochondrial dysfunction and vascular inflammation in TL treated HBMECs. TL activates ATF3-MAPKinase, TNF, and NRF2 signaling pathways. Furthermore, the NRF2 signaling pathway which is upstream of the ATF3-MAPKinase signaling pathway, is also regulated by the mitochondrial oxidative stress. We are the first to report differential inflammatory characteristics of transcript variants 4 (ATF3-T4) and 5 (ATF3-T5) of the stress responsive gene ATF3 in HBMECs induced by postprandial TL. Specifically, our data indicates that ATF3-T4 predominantly regulates the TL-induced brain microvascular inflammation and TNF signaling. Both siRNAs of ATF3-T4 and ATF3-T5 suppress cells apoptosis and lipotoxic brain microvascular endothelial cells. These novel signaling pathways triggered by oxidative stress-responsive transcript variants, ATF3-T4 and ATF3-T5, in the brain microvascular inflammation induced by TGRL lipolysis products may contribute to pathophysiological processes of vascular dementia.


Assuntos
Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Encéfalo/patologia , Microvasos/lesões , Mitocôndrias/metabolismo , Estresse Oxidativo , Apoptose , Lesões Encefálicas/metabolismo , Dano ao DNA , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Variação Genética , Glicólise , Humanos , Inflamação , Lipólise , Microvasos/metabolismo , Consumo de Oxigênio , Período Pós-Prandial , Prótons , RNA Interferente Pequeno/metabolismo , RNA-Seq , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Superóxidos/metabolismo
10.
Food Funct ; 9(12): 6245-6256, 2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30402637

RESUMO

Our lab previously demonstrated that triglyceride-rich lipoprotein (TGRL) lipolysis products induce lipid droplet formation and pro-inflammatory gene expression in monocytes. We hypothesized that the inhibition of perilipin 2 expression in THP-1 monocytes would reduce lipid droplet formation and suppress pro-inflammatory gene expression induced by TGRL lipolysis products. In the current study, we use microarray analysis to identify gene expression altered by TGRL lipolysis products in THP-1 monocytes. We confirmed the expression of selected genes by quantitative reverse transcription PCR and characterized lipid droplet formation in these cells after exposure to TGRL lipolysis products. Using siRNA inhibition of perilipin 2 expression, we examined the role of perilipin 2 in the response of THP-1 monocytes to TGRL lipolysis products. We found that perilipin 2 siRNA increased the intracellular triglyceride content, increased the size of lipid droplets, and reduced pro-atherogenic and pro-inflammatory gene expression. We saw a reduction of serum/glucocorticoid kinase 1, v-maf musculoaponeurotic fibrosarcoma oncogene homolog F (avian), chemokine (C-C motif) ligand 3, and interleukin 8 gene expression induced by TGRL lipolysis products. This study supports previous findings that reduction of perilipin 2 expression is protective against atherogenesis, while finding an unexpected increase in lipid droplet size with reduced perilipin 2 expression.


Assuntos
Quimiocina CCL3/genética , Interleucina-8/genética , Gotículas Lipídicas/metabolismo , Monócitos/efeitos dos fármacos , Perilipina-2/genética , Adulto , Quimiocina CCL3/metabolismo , Regulação para Baixo , Feminino , Humanos , Interleucina-8/metabolismo , Gotículas Lipídicas/química , Lipólise , Lipoproteínas/metabolismo , Masculino , Monócitos/metabolismo , Perilipina-2/metabolismo , Triglicerídeos/metabolismo , Adulto Jovem
11.
Curr Pharm Des ; 24(17): 1827-1831, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29623829

RESUMO

Dementia has become a major health concern for the aging population of the United States. Studies indicate that participation in moderate exercise, with training, has been shown to have a beneficial impact on cognition. Thus, exercise and its effects on cognitive function has become an important area of research. This review summarizes the current literature on the potential mechanisms of the benefits of exercise for cognitive function.


Assuntos
Cognição , Demência/prevenção & controle , Exercício Físico , Humanos
12.
PLoS One ; 13(2): e0191909, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29444171

RESUMO

Recent work suggests that diet affects brain metabolism thereby impacting cognitive function. Our objective was to determine if a western diet altered brain metabolism, increased blood-brain barrier (BBB) transport and inflammation, and induced cognitive impairment in C57BL/6 (WT) mice and low-density lipoprotein receptor null (LDLr -/-) mice, a model of hyperlipidemia and cognitive decline. We show that a western diet and LDLr -/- moderately influence cognitive processes as assessed by Y-maze and radial arm water maze. Also, western diet significantly increased BBB transport, as well as microvessel factor VIII in LDLr -/- and microglia IBA1 staining in WT, both indicators of activation and neuroinflammation. Interestingly, LDLr -/- mice had a significant increase in 18F- fluorodeoxyglucose uptake irrespective of diet and brain 1H-magnetic resonance spectroscopy showed increased lactate and lipid moieties. Metabolic assessments of whole mouse brain by GC/MS and LC/MS/MS showed that a western diet altered brain TCA cycle and ß-oxidation intermediates, levels of amino acids, and complex lipid levels and elevated proinflammatory lipid mediators. Our study reveals that the western diet has multiple impacts on brain metabolism, physiology, and altered cognitive function that likely manifest via multiple cellular pathways.


Assuntos
Barreira Hematoencefálica , Encéfalo/metabolismo , Cognição , Dieta Ocidental , Receptores de LDL/genética , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
13.
Food Funct ; 9(2): 1187-1198, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29372223

RESUMO

In our previous work in mice, we have shown that chronic consumption of a Western diet (WD; 42% kcal fat, 0.2% total cholesterol and 34% sucrose) is correlated with impaired cognitive function. Cognitive decline has also been associated with alterations in DNA methylation. Additionally, although there have been many studies analyzing the effect of maternal consumption of a WD on DNA methylation in the offspring, few studies have analyzed how an individual's consumption of a WD can impact his/her DNA methylation. Since the frontal cortex is involved in the regulation of cognitive function and is often affected in cases of cognitive decline, this study aimed to examine how chronic consumption of a WD affects DNA methylation in the frontal cortex of mice. Eight-week-old male mice were fed either a control diet (CD) or a WD for 12 weeks, after which time alterations in DNA methylation were analyzed. Assessment of global DNA methylation in the frontal cortex using dot blot analysis revealed that there was a decrease in global DNA methylation in the WD-fed mice compared with the CD-fed mice. Bioinformatic analysis identified several networks and pathways containing genes displaying differential methylation, particularly those involved in metabolism, cell adhesion and cytoskeleton integrity, inflammation and neurological function. In conclusion, the results from this study suggest that consumption of a WD alters DNA methylation in the frontal cortex of mice and could provide one of the mechanisms by which consumption of a WD impairs cognitive function.


Assuntos
Metilação de DNA , Dieta Ocidental/efeitos adversos , Lobo Frontal/metabolismo , Animais , Cognição , Ingestão de Alimentos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
14.
J Am Heart Assoc ; 6(7)2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28711864

RESUMO

BACKGROUND: The relative benefit of higher statin dosing in patients with peripheral artery disease has not been reported previously. We compared the effectiveness of low- or moderate-intensity (LMI) versus high-intensity (HI) statin dose on clinical outcomes in patients with peripheral artery disease. METHODS AND RESULTS: We reviewed patients with symptomatic peripheral artery disease who underwent peripheral angiography and/or endovascular intervention from 2006 to 2013 who were not taking other lipid-lowering medications. HI statin use was defined as atorvastatin 40-80 mg or rosuvastatin 20-40 mg. Baseline demographics, procedural data, and outcomes were retrospectively analyzed. Among 909 patients, 629 (69%) were prescribed statins, and 124 (13.6%) were treated with HI statin therapy. Mean low-density lipoprotein level was similar in patients on LMI versus HI (80±30 versus 87±44 mg/dL, P=0.14). Demographics including age (68±12 versus 67±10 years, P=0.25), smoking history (76% versus 80%, P=0.42), diabetes mellitus (54% versus 48%, P=0.17), and hypertension (88% versus 89%, P=0.78) were similar between groups (LMI versus HI). There was a higher prevalence of coronary artery disease (56% versus 75%, P=0.0001) among patients on HI statin (versus LMI). After propensity weighting, HI statin therapy was associated with improved survival (hazard ratio for mortality: 0.52; 95% confidence interval, 0.33-0.81; P=0.004) and decreased major adverse cardiovascular events (hazard ratio: 0.58; 95% confidence interval 0.37-0.92, P=0.02). CONCLUSIONS: In patients with peripheral artery disease who were referred for peripheral angiography or endovascular intervention, HI statin therapy was associated with improved survival and fewer major adverse cardiovascular events compared with LMI statin therapy.


Assuntos
Atorvastatina/administração & dosagem , Dislipidemias/tratamento farmacológico , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Claudicação Intermitente/tratamento farmacológico , Isquemia/tratamento farmacológico , Doença Arterial Periférica/tratamento farmacológico , Rosuvastatina Cálcica/administração & dosagem , Idoso , Idoso de 80 Anos ou mais , Amputação Cirúrgica , Angiografia , Atorvastatina/efeitos adversos , Biomarcadores/sangue , Estado Terminal , Progressão da Doença , Intervalo Livre de Doença , Prescrições de Medicamentos , Dislipidemias/sangue , Dislipidemias/diagnóstico por imagem , Dislipidemias/mortalidade , Procedimentos Endovasculares , Feminino , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Claudicação Intermitente/sangue , Claudicação Intermitente/diagnóstico por imagem , Claudicação Intermitente/mortalidade , Isquemia/sangue , Isquemia/diagnóstico por imagem , Isquemia/mortalidade , Estimativa de Kaplan-Meier , Lipídeos/sangue , Masculino , Pessoa de Meia-Idade , Doença Arterial Periférica/sangue , Doença Arterial Periférica/diagnóstico por imagem , Doença Arterial Periférica/mortalidade , Padrões de Prática Médica/tendências , Sistema de Registros , Estudos Retrospectivos , Fatores de Risco , Rosuvastatina Cálcica/efeitos adversos , Fatores de Tempo , Resultado do Tratamento
15.
Am J Physiol Cell Physiol ; 312(4): C500-C516, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28077357

RESUMO

Elevation of blood triglycerides, primarily as triglyceride-rich lipoproteins (TGRL), has been linked to cerebrovascular inflammation, vascular dementia, and Alzheimer's disease (AD). Brain microvascular endothelial cells and astrocytes, two cell components of the neurovascular unit, participate in controlling blood-brain barrier (BBB) permeability and regulating neurovascular unit homeostasis. Our studies showed that infusion of high physiological concentrations of TGRL lipolysis products (TGRL + lipoprotein lipase) activate and injure brain endothelial cells and transiently increase the BBB transfer coefficient (Ki = permeability × surface area/volume) in vivo. However, little is known about how blood lipids affect astrocyte lipid accumulation and inflammation. To address this, we first demonstrated TGRL lipolysis products increased lipid droplet formation in cultured normal human astrocytes. We then evaluated the transcriptional pathways activated in astrocytes by TGRL lipolysis products and found upregulated stress and inflammatory-related genes including activating transcription factor 3 (ATF3), macrophage inflammatory protein-3α (MIP-3α), growth differentiation factor-15 (GDF15), and prostaglandin-endoperoxide synthase 2 (COX2). TGRL lipolysis products also activated the JNK/cJUN/ATF3 pathway, induced endoplasmic reticulum stress protein C/EBP homologous protein (CHOP), and the NF-κB pathway, while increasing secretion of MIP-3α, GDF15, and IL-8. Thus our results demonstrate TGRL lipolysis products increase the BBB transfer coefficient (Ki), induce astrocyte lipid droplet formation, activate cell stress pathways, and induce secretion of inflammatory cytokines. Our observations are consistent with evidence for lipid-induced neurovascular injury and inflammation, and we, therefore, speculate that lipid-induced astrocyte injury could play a role in cognitive decline.


Assuntos
Astrócitos/metabolismo , Barreira Hematoencefálica/fisiologia , Gotículas Lipídicas/metabolismo , Lipólise/fisiologia , Lipoproteínas/metabolismo , Estresse Oxidativo/fisiologia , Triglicerídeos/metabolismo , Animais , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL
16.
Environ Epigenet ; 3(2): dvx008, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-29492310

RESUMO

The observation that Alzheimer's disease (AD) patients with similar and even identical genetic backgrounds often present with heterogeneous pathologies has prompted the hypothesis that epigenetics may contribute to AD. While the study of epigenetics encompasses a variety of modifications including histone modifications and non-coding RNAs, much of the research on how epigenetics might impact AD pathology has been focused on DNA methylation. To this end, several studies have characterized DNA methylation alterations in various brain regions of individuals with AD, with conflicting results. This review examines the results of studies analyzing both global and gene-specific DNA methylation changes in AD and also assesses the results of studies analyzing DNA hydroxymethylation in patients with AD.

17.
Epigenetics ; 11(11): 804-818, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27611852

RESUMO

Wilson disease (WD), a genetic disorder affecting copper transport, is characterized by hepatic and neurological manifestations with variable and often unpredictable presentation. Global DNA methylation in liver was previously modified by dietary choline in tx-j mice, a spontaneous mutant model of WD. We therefore hypothesized that the WD phenotype and hepatic gene expression of tx-j offspring could be modified by maternal methyl supplementation during pregnancy. In an initial experiment, female tx-j mice or wild type mice were fed control or choline-supplemented diets 2 weeks prior to mating through embryonic day 17. Transcriptomic analysis (RNA-seq) on embryonic livers revealed tx-j-specific differences in genes related to oxidative phosphorylation, mitochondrial dysfunction, and the neurological disorders Huntington's disease and Alzheimer disease. Maternal choline supplementation restored the transcript levels of a subset of genes to wild type levels. In a separate experiment, a group of tx-j offspring continued to receive choline-supplemented or control diets, with or without the copper chelator penicillamine (PCA) for 12 weeks until 24 weeks of age. Combined choline supplementation and PCA treatment of 24-week-old tx-j mice was associated with increased liver transcript levels of methionine metabolism and oxidative phosphorylation-related genes. Sex differences in gene expression within each treatment group were also observed. These results demonstrate that the transcriptional changes in oxidative phosphorylation and methionine metabolism genes in WD that originate during fetal life are, in part, prevented by prenatal maternal choline supplementation, a finding with potential relevance to preventive treatments of WD.


Assuntos
Metilação de DNA/genética , Epigenômica , Degeneração Hepatolenticular/genética , Transcriptoma/genética , Animais , Colina/administração & dosagem , Colina/metabolismo , Cobre/metabolismo , Suplementos Nutricionais , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Degeneração Hepatolenticular/metabolismo , Degeneração Hepatolenticular/patologia , Humanos , Fígado/metabolismo , Fígado/patologia , Metionina/metabolismo , Camundongos , Fosforilação Oxidativa/efeitos dos fármacos , Penicilamina/administração & dosagem , Gravidez
18.
J Nutr ; 146(7): 1411-9, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27306892

RESUMO

BACKGROUND: Saturated fatty acids (FAs) released from triglyceride-rich lipoproteins (TGRLs) activate Toll-like receptor 2 (TLR-2) and induce the expression of proinflammatory cytokines in monocytes. Certain plant polyphenols inhibit TLR-mediated signaling pathways. OBJECTIVE: We determined whether plasma free FAs (FFAs) after a moderately high-fat (MHF, 40% kcal from fat) breakfast modulate the inflammatory status of postprandial blood, and whether blueberry intake suppresses FFA-induced inflammatory responses in healthy humans. METHODS: Twenty-three volunteers with a mean ± SEM age and body mass index (in kg/m(2)) of 30 ± 3 y and 21.9 ± 0.4, respectively, consumed an MHF breakfast with either a placebo powder or 2 or 4 servings of blueberry powder in a randomized crossover design. The placebo powder was provided on the first test day and the blueberry powder doses were randomized with a 2-wk washout period. Plasma concentrations of lipids, glucose, and cytokines were determined. To determine whether FFAs derived from TGRL stimulate monocyte activation, and whether this is inhibited by blueberry intake, whole blood was treated with lipoprotein lipase (LPL). RESULTS: The median concentrations of FFAs and cytokines [tumor necrosis factor-α, interleukin (IL)-6 and IL-8] in postprandial plasma (3.5 h) decreased compared with fasting plasma regardless of the blueberry intake (P < 0.001 for FFAs and P < 0.05 for cytokines). However, concentrations of FFAs and cytokines including IL-1ß increased in LPL-treated whole blood compared with untreated blood samples from participants who consumed the placebo powder. Blueberry intake suppressed IL-1ß and IL-6 production in LPL-treated postprandial blood compared with the placebo control when fasting changes were used as a covariate. CONCLUSIONS: The plasma FFA concentration may be an important determinant affecting inflammatory cytokine production in blood. Supplementation with blueberry powder did not affect plasma FFA and cytokine concentrations; however, it attenuated the cytokine production induced by ex vivo treatment of whole blood with LPL. This trial was registered at clinicaltrials.gov as NCT01594008.


Assuntos
Mirtilos Azuis (Planta) , Gorduras na Dieta , Ácidos Graxos não Esterificados/sangue , Inflamação/sangue , Refeições , Período Pós-Prandial , Adulto , Estudos Cross-Over , Citocinas/sangue , Citocinas/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/prevenção & controle , Monócitos/efeitos dos fármacos , Monócitos/fisiologia , Pós
19.
J Lipid Res ; 57(6): 955-68, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27087439

RESUMO

Dysfunction of the cerebrovasculature plays an important role in vascular cognitive impairment (VCI). Lipotoxic injury of the systemic endothelium in response to hydrolyzed triglyceride-rich lipoproteins (TGRLs; TGRL lipolysis products) or a high-fat Western diet (WD) suggests similar mechanisms may be present in brain microvascular endothelium. We investigated the hypothesis that TGRL lipolysis products cause lipotoxic injury to brain microvascular endothelium by generating increased mitochondrial superoxide radical generation, upregulation of activating transcription factor 3 (ATF3)-dependent inflammatory pathways, and activation of cellular oxidative stress and apoptotic pathways. Human brain microvascular endothelial cells were treated with human TGRL lipolysis products that induced intracellular lipid droplet formation, mitochondrial superoxide generation, ATF3-dependent transcription of proinflammatory, stress response, and oxidative stress genes, as well as activation of proapoptotic cascades. Male apoE knockout mice were fed a high-fat/high-cholesterol WD for 2 months, and brain microvessels were isolated by laser capture microdissection. ATF3 gene transcription was elevated 8-fold in the hippocampus and cerebellar brain region of the WD-fed animals compared with chow-fed control animals. The microvascular injury phenotypes observed in vitro and in vivo were similar. ATF3 plays an important role in mediating brain microvascular responses to acute and chronic lipotoxic injury and may be an important preventative and therapeutic target for endothelial dysfunction in VCI.


Assuntos
Fator 3 Ativador da Transcrição/genética , Traumatismo Cerebrovascular/genética , Disfunção Cognitiva/genética , Inflamação/genética , Lipoproteínas/metabolismo , Triglicerídeos/metabolismo , Fator 3 Ativador da Transcrição/biossíntese , Animais , Cerebelo/irrigação sanguínea , Cerebelo/metabolismo , Cerebelo/patologia , Traumatismo Cerebrovascular/metabolismo , Traumatismo Cerebrovascular/fisiopatologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Dieta Hiperlipídica/efeitos adversos , Dieta Ocidental/efeitos adversos , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Hipocampo/irrigação sanguínea , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Inflamação/metabolismo , Inflamação/fisiopatologia , Camundongos , Estresse Oxidativo/genética , Transdução de Sinais/genética
20.
Metab Syndr Relat Disord ; 14(4): 202-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26881897

RESUMO

BACKGROUND: Previous studies indicated that nonpurified and purified commercially available control murine diets have different metabolic effects with potential consequences on hepatic methionine metabolism and liver histology. METHODS: We compared the metabolic and histological effects of commercial nonpurified (13% calories from fat; 57% calories from carbohydrates with 38 grams/kg of sucrose) and purified control diets (12% calories from fat; 69% calories from carbohydrates with ∼500 grams/kg of sucrose) with or without choline supplementation administered to C3H mice with normal lipid and methionine metabolism. Diets were started 2 weeks before mating, continued through pregnancy and lactation, and continued in offspring until 24 weeks of age when we collected plasma and liver tissue to study methionine and lipid metabolism. RESULTS: Compared to mice fed nonpurified diets, the liver/body weight ratio was significantly higher in mice fed either purified diet, which was associated with hepatic steatosis and inflammation. Plasma alanine aminotransferase levels were higher in mice receiving the purified diets. The hepatic S-adenosylmethionine (SAM)/S-adenosylhomocysteine (SAH) ratio was higher in female mice fed purified compared to nonpurified diet (4.6 ± 2 vs. 2.8 ± 1.9; P < 0.05). Choline supplementation was associated with improvement of some parameters of lipid and methionine metabolism in mice fed purified diets. CONCLUSIONS: Standard nonpurified and purified diets have significantly different effects on development of steatosis in control mice. These findings can help in development of animal models of fatty liver and in choosing appropriate laboratory control diets for control animals.


Assuntos
Colina/metabolismo , Fígado Gorduroso/metabolismo , Metabolismo dos Lipídeos , Metionina/metabolismo , Animais , Dieta , Gorduras na Dieta/administração & dosagem , Sacarose Alimentar/administração & dosagem , Suplementos Nutricionais , Comportamento Alimentar , Feminino , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C3H , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA