Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 14795, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908169

RESUMO

Addressing the need for novel insect observation and control tools, the Photonic Fence detects and tracks mosquitoes and other flying insects and can apply lethal doses of laser light to them. Previously, we determined lethal exposure levels for a variety of lasers and pulse conditions on anesthetized Anopheles stephensi mosquitoes. In this work, similar studies were performed while the subjects were freely flying within transparent cages two meters from the optical system; a proof-of-principle demonstration of a 30 m system was also performed. From the dose-response curves of mortality data created as a function of various beam diameter, pulse width, and power conditions at visible and near-infrared wavelengths, the visible wavelengths required significantly lower laser exposure than near infrared wavelengths to disable subjects, though near infrared sources remain attractive given their cost and retina safety. The flight behavior of the subjects and the performance of the tracking system were found to have no impact on the mortality outcomes for pulse durations up to 25 ms, which appears to be the ideal duration to minimize required laser power. The results of this study affirm the practicality of using optical approaches to protect people and crops from pestilent flying insects.


Assuntos
Voo Animal/efeitos da radiação , Insetos/efeitos da radiação , Lasers , Animais , Relação Dose-Resposta à Radiação , Retina/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA