Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
NPJ Microgravity ; 10(1): 43, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553503

RESUMO

As the International Space Station comes to the end of a transformative era of in-space research, NASA's Commercial Low Earth Orbit (LEO) Destinations (CLD) Program aims to catalyze a new generation of platforms with co-investment from the private sector, preventing a potential gap in research performed in LEO, while building a robust LEO economy. In this paper, we provide insight into the CLD Program focusing on Orbital Reef, describing its operational and technical characteristics as well as new opportunities it may enable. Achieving about a third of the pressurized volume of the ISS with the launch of a single pressurized module and growing to support hundreds of Middeck Locker Equivalents (MLE) in passive and active payloads internally and externally, Orbital Reef will enable government, academic, and commercial institutions to continue and expand upon research and development (R&D) efforts currently performed on ISS. Additionally, it will enable nascent markets to establish their operations in space, by initiating new lines of research and technology development and the implementation of new ventures and visions. Using Blue Origin's New Glenn heavy launch system, Sierra Space's cargo and crew Dream Chaser® vehicles, and Boeing's Starliner crew vehicle, and expertise from Amazon/Amazon Supply Chain, Arizona State University, Genesis Engineering, and Redwire, Orbital Reef is being designed to address ISS-era transportation logistics challenges. Finally, this manuscript describes some of the expected challenges from the ISS-to-CLD transition, and provides guidance on how researchers in academia and industry can shape the future of commercial destinations and work performed in LEO.

3.
J Vestib Res ; 15(3): 131-47, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16179762

RESUMO

Vestibulo-ocular reflex (VOR) adaptation and brainstem Fos expression as a result of short radius cross-coupling stimuli were investigated to find neural correlates of the inherent Coriolis force asymmetry from an artificial gravity (AG) environment. Head-fixed gerbils (Meriones unguiculatus, N=79) were exposed, in the dark, to 60--90 minutes of cross-coupled rotations, combinations of pitch (or roll) and yaw rotation, while binocular horizontal, vertical, and torsional eye position were determined using infrared video-oculography. Centripetal acceleration in combination with angular cross-coupling was also studied. Simultaneous sinusoidal rotations in two planes (yaw with roll or pitch) provided a net symmetrical stimulus for the right and left labyrinths. In contrast, a constant velocity yaw rotation during sinusoidal roll or pitch provided the asymmetric stimulus model for AG. We found orthogonally oriented half-cycle VOR gain changes. The results depended on the direction of horizontal rotation during asymmetrical cross-coupling, and other aspects of the stimulus, including the phase relationship between the two rotational inputs, the symmetry of the stimulus, and training. Fos expression also revealed laterality differences in the prepositus and inferior olivary C subnucleus. In contrast the inferior olivary beta and ventrolateral outgrowth were labeled bilaterally. Additional cross-coupling dependent labeling was found in the flocculus, hippocampus, and several cortical regions, including the perirhinal and temporal association cortices. Analyses showed significant differences across the brain regions for several factors (symmetry, rotation velocity and direction, the presence of centripetal acceleration or a visual surround, and training). Finally, animals compensating from a unilateral surgical labyrinthectomy who received multiple cross-coupling training sessions had improved half-cycle VOR gain in the ipsilateral eye with head rotation toward the intact side. We hypothesize that cross-coupling vestibular training can benefit aspects of motor recovery or performance.


Assuntos
Adaptação Fisiológica , Gravidade Alterada/efeitos adversos , Proteínas Proto-Oncogênicas c-fos/biossíntese , Reflexo Vestíbulo-Ocular/fisiologia , Animais , Escuridão , Orelha Interna/fisiologia , Feminino , Gerbillinae , Masculino , Modelos Animais , Rotação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA