Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Am Soc Mass Spectrom ; 33(1): 5-10, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34870996

RESUMO

The current IUPAC-recommended definition of the term "monoisotopic mass" of a chemical species is based on the most abundant isotopes of the constituent elements. It has even been proposed to constrain the definition to be based only on the atomic masses of the most abundant stable isotopes. Such an approach is flawed because in this way several elements and their compounds, in addition to isotopically enriched species, would not merit to be assigned a monoisotopic mass. Furthermore, for large molecules, such as proteins, the monoisotopic mass as currently defined loses its significance. Therefore, we propose to eliminate using the current definition altogether. Instead, the term isotopologue mass should be applied uniformly to every species denoted by a specific chemical formula.

2.
Int J Mol Sci ; 19(12)2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30467297

RESUMO

BACKGROUND: Sarcosine is an amino acid that is formed by methylation of glycine and is present in trace amounts in the body. Increased sarcosine concentrations in blood plasma and urine are manifested in sarcosinemia and in some other diseases such as prostate cancer. For this purpose, sarcosine detection using the nanomedicine approach was proposed. In this study, we have prepared superparamagnetic iron oxide nanoparticles (SPIONs) with different modified surface area. Nanoparticles (NPs) were modified by chitosan (CS), and sarcosine oxidase (SOX). SPIONs without any modification were taken as controls. Methods and Results: The obtained NPs were characterized by physicochemical methods. The size of the NPs determined by the dynamic light scattering method was as follows: SPIONs/Au/NPs (100⁻300 nm), SPIONs/Au/CS/NPs (300⁻700 nm), and SPIONs/Au/CS/SOX/NPs (600⁻1500 nm). The amount of CS deposited on the NP surface was found to be 48 mg/mL for SPIONs/Au/CS/NPs and 39 mg/mL for SPIONs/Au/CS/SOX/NPs, and repeatability varied around 10%. Pseudo-peroxidase activity of NPs was verified using sarcosine, horseradish peroxidase (HRP) and 3,3',5,5'-tetramethylbenzidine (TMB) as a substrate. For TMB, all NPs tested evinced substantial pseudo-peroxidase activity at 650 nm. The concentration of SPIONs/Au/CS/SOX/NPs in the reaction mixture was optimized to 0⁻40 mg/mL. Trinder reaction for sarcosine detection was set up at 510 nm at an optimal reaction temperature of 37 °C and pH 8.0. The course of the reaction was linear for 150 min. The smallest amount of NPs that was able to detect sarcosine was 0.2 mg/well (200 µL of total volume) with the linear dependence y = 0.0011x - 0.0001 and the correlation coefficient r = 0.9992, relative standard deviation (RSD) 6.35%, limit of detection (LOD) 5 µM. The suggested method was further validated for artificial urine analysis (r = 0.99, RSD 21.35%, LOD 18 µM). The calculation between the detected and applied concentrations showed a high correlation coefficient (r = 0.99). NPs were tested for toxicity and no significant growth inhibition was observed in any model system (S. cerevisiae, S. aureus, E. coli). The hemolytic activity of the prepared NPs was similar to that of the phosphate buffered saline (PBS) control. The reaction system was further tested on real urine specimens. Conclusion: The proposed detection system allows the analysis of sarcosine at micromolar concentrations and to monitor changes in its levels as a potential prostate cancer marker. The whole system is suitable for low-cost miniaturization and point-of-care testing technology and diagnostic systems. This system is simple, inexpensive, and convenient for screening tests and telemedicine applications.


Assuntos
Biomarcadores Tumorais/urina , Quitosana/química , Nanopartículas de Magnetita/química , Neoplasias da Próstata/diagnóstico , Sarcosina Oxidase/química , Sarcosina/urina , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Compostos Férricos/química , Ouro/química , Hemólise/efeitos dos fármacos , Peroxidase do Rábano Silvestre/química , Humanos , Concentração de Íons de Hidrogênio , Limite de Detecção , Nanopartículas de Magnetita/ultraestrutura , Masculino , Oxirredução , Tamanho da Partícula , Medicina de Precisão , Neoplasias da Próstata/urina , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
3.
J Lipid Res ; 58(5): 1008-1020, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28280113

RESUMO

Fluorescent lipids are important tools for live imaging in cell culture and animal models, yet their metabolism has not been well-characterized. Here we describe a novel combined HPLC and LC-MS/MS method developed to characterize both total lipid profiles and the products of fluorescently labeled lipids. Using this approach, we found that lipids labeled with the fluorescent tags, 4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene (BODIPY FL), 4,4-difluoro-5-(2-thienyl)-4-bora-3a,4a-diaza-s-indacene [BODIPY(558/568)], and dipyrrometheneboron difluoride undecanoic acid (TopFluor) are all metabolized into varying arrays of polar and nonpolar fluorescent lipid products when they are fed to larval zebrafish. Quantitative metabolic labeling experiments performed in this system revealed significant effects of total dietary lipid composition on fluorescent lipid partitioning. We provide evidence that cholesterol metabolism in the intestine is important in determining the metabolic fates of dietary FAs. Using this method, we found that inhibitors of dietary cholesterol absorption and esterification both decreased incorporation of dietary fluorescent FAs into cholesterol esters (CEs), suggesting that CE synthesis in enterocytes is primarily responsive to the availability of dietary cholesterol. These results are the first to comprehensively characterize fluorescent FA metabolism and to demonstrate their utility as metabolic labeling reagents, effectively coupling quantitative biochemistry with live imaging studies.


Assuntos
Ácidos Graxos/química , Ácidos Graxos/metabolismo , Corantes Fluorescentes/química , Metabolômica/métodos , Aerossóis , Animais , Transporte Biológico , Compostos de Boro/química , Colesterol na Dieta/metabolismo , Cromatografia Líquida de Alta Pressão , Enterócitos/metabolismo , Esterificação , Larva/metabolismo , Espectrometria de Fluorescência , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo
4.
Anal Bioanal Chem ; 408(4): 1033-42, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26547190

RESUMO

A new anion-exchange chromatographic separation method was used for the simultaneous speciation analysis of selenoamino acids and the more ubiquitous inorganic selenium oxyanions, selenite and selenate. For quantification, this separation was coupled to inductively coupled plasma-mass spectrometry to achieve an instrumental detection limit of 5 ng Se L(-1) for all species. This chromatographic method was also coupled to electrospray tandem mass spectrometry to observe the negative ion mode fragmentation of selenomethionine and one of its oxidation products. Low detection limits were achieved, which were similar to those obtained using inductively coupled plasma-mass spectrometry. An extensive preconcentration and cleanup procedure using cation-exchange solid-phase extraction was developed for the identification and quantification of trace levels of selenomethionine in environmental samples. Preconcentration factors of up to five were observed for selenomethionine, which in addition to the removal of high concentrations of sulphate and chloride from industrial process waters, allowed for an unambiguous analysis that would have been impossible otherwise. Following these methods, selenomethionine was identified at an original concentration of 3.2 ng Se L(-1) in samples of effluent collected at a coal-fired power plant's biological remediation site. It is the first time that this species has been identified in the environment, outside of a biological entity. Additionally, oxidation products of selenomethionine were identified in river water and laboratory algal culture samples. High-resolution mass spectrometry was employed to postulate the chemical structures of these species.


Assuntos
Cromatografia por Troca Iônica/métodos , Água Doce/análise , Selenometionina/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Ânions , Água Doce/química , Limite de Detecção , Compostos Organosselênicos/análise , Concentração Osmolar , Oxirredução , Ácido Selênico/análise , Compostos de Selênio/análise , Selenometionina/química , Extração em Fase Sólida
6.
Proc Natl Acad Sci U S A ; 108(34): 13995-8, 2011 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-21836052

RESUMO

All terrestrial organisms depend on nucleic acids (RNA and DNA), which use pyrimidine and purine nucleobases to encode genetic information. Carbon-rich meteorites may have been important sources of organic compounds required for the emergence of life on the early Earth; however, the origin and formation of nucleobases in meteorites has been debated for over 50 y. So far, the few nucleobases reported in meteorites are biologically common and lacked the structural diversity typical of other indigenous meteoritic organics. Here, we investigated the abundance and distribution of nucleobases and nucleobase analogs in formic acid extracts of 12 different meteorites by liquid chromatography-mass spectrometry. The Murchison and Lonewolf Nunataks 94102 meteorites contained a diverse suite of nucleobases, which included three unusual and terrestrially rare nucleobase analogs: purine, 2,6-diaminopurine, and 6,8-diaminopurine. In a parallel experiment, we found an identical suite of nucleobases and nucleobase analogs generated in reactions of ammonium cyanide. Additionally, these nucleobase analogs were not detected above our parts-per-billion detection limits in any of the procedural blanks, control samples, a terrestrial soil sample, and an Antarctic ice sample. Our results demonstrate that the purines detected in meteorites are consistent with products of ammonium cyanide chemistry, which provides a plausible mechanism for their synthesis in the asteroid parent bodies, and strongly supports an extraterrestrial origin. The discovery of new nucleobase analogs in meteorites also expands the prebiotic molecular inventory available for constructing the first genetic molecules.


Assuntos
Carbono/química , Meio Ambiente Extraterreno , Meteoroides , Ácidos Nucleicos/análise , Espectrometria de Massas , Padrões de Referência
7.
J Mass Spectrom ; 46(1): 12-23, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21226130

RESUMO

Peaks for [M + H](+) are not observed when electrospray ionization mass spectra of tetrahydropyranyl (THP) ethers are recorded under acidic conditions. However, gaseous [M + H](+) ions can be generated from ammonium adducts of THP ethers of primary alcohols by in-source fragmentation. The product ion spectra of these proton adducts show two significant peaks at m/z 85 and 103. Tandem mass spectrometric data obtained from appropriately deuteriated derivatives and ab initio calculations indicate that the m/z 85 ion originates from more than one mechanism and represents two structurally different species. A charge-directed E1-elimination mechanism or an inductive cleavage mechanism can produce the 3,4,5,6-tetrahydropyrylium ion as one of the structures for the m/z 85 ion, whereas a charge-remote process with ring contraction can generate the 5-methyl-3,4-dihydro-2H-furylium ion as the other structure. A comparison of the relative abundances of product ions from different isotopologues showed that the charge-remote process is the preferred mechanism. This is congruent with the ab initio calculations, which showed that the dihydrofurylium ion bears the lowest energy structure. The less abundant m/z 103 ion, which represents a protonated tetrahydropyran-2-ol, is formed by a charge-remote process via a proton transfer from the alkyl substituent. This process involves the formation and rearrangement of a carbenium ion in close association with a hydroxypentanal molecule. A proton transfer from the carbenium ion to the aldehyde is followed by elimination of an alkene.

8.
J Mass Spectrom ; 45(3): 272-83, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20033929

RESUMO

Collision-induced dissociation (CID) mass spectra of differently substituted glucosinolates were investigated under negative-ion mode. Data obtained from several glucosinolates and their isotopologues ((34)S and (2)H) revealed that many peaks observed are independent of the nature of the substituent group. For example, all investigated glucosinolate anions fragment to produce a product ion observed at m/z 195 for the thioglucose anion, which further dissociates via an ion/neutral complex to give two peaks at m/z 75 and 119. The other product ions observed at m/z 80, 96 and 97 are characteristic for the sulfate moiety. The peaks at m/z 259 and 275 have been attributed previously to glucose 1-sulfate anion and 1-thioglucose 2-sulfate anion, respectively. However, based on our tandem mass spectrometric experiments, we propose that the peak at m/z 275 represents the glucose 1-thiosulfate anion. In addition to the common peaks, the spectrum of phenyl glucosinolate (beta-D-Glucopyranose, 1-thio-, 1-[N-(sulfooxy)benzenecarboximidate] shows a substituent-group-specific peak at m/z 152 for C(6)H(5)-C(=NOH)S(-), the CID spectrum of which was indistinguishable from that of the anion of synthetic benzothiohydroxamic acid. Similarly, the m/z 201 peak in the spectrum of phenyl glucosinolate was attributed to C(6)H(5)-C(=S)OSO(2)(-).


Assuntos
Algoritmos , Glucosinolatos/análise , Glucosinolatos/química , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Ânions
9.
J Mass Spectrom ; 43(9): 1224-34, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18338324

RESUMO

Collision-induced dissociation of anions derived from ortho-alkyloxybenzoic acids provides a facile way of producing gaseous enolate anions. The alkyloxyphenyl anion produced after an initial loss of CO(2) undergoes elimination of a benzene molecule by a double-hydrogen transfer mechanism, unique to the ortho isomer, to form an enolate anion. Deuterium labeling studies confirmed that the two hydrogen atoms transferred in the benzene loss originate from positions 1 and 2 of the alkyl chain. An initial transfer of a hydrogen atom from the C-1 position forms a phenyl anion and a carbonyl compound, both of which remain closely associated as an ion/neutral complex. The complex breaks either directly to give the phenyl anion by eliminating the neutral carbonyl compound, or to form an enolate anion by transferring a hydrogen atom from the C-2 position and eliminating a benzene molecule in the process. The pronounced primary kinetic isotope effect observed when a deuterium atom is transferred from the C-1 position, compared to the weak effect seen for the transfer from the C-2 position, indicates that the first transfer is the rate determining step. Quantum mechanical calculations showed that the neutral loss of benzene is a thermodynamically favorable process. Under the conditions used, only the spectra from ortho isomers showed peaks at m/z 77 for the phenyl anion and m/z 93 for the phenoxyl anion, in addition to that for the ortho-specific enolate anion. Under high collision energy, the ortho isomers also produce a peak at m/z 137 for an alkene loss. The spectra of meta and para compounds show a peak at m/z 92 for the distonic anion produced by the homolysis of the O-C bond. Moreover, a small peak at m/z 136 for a distonic anion originating from an alkyl radical loss allows the differentiation of para compounds from meta isomers.

10.
J Mass Spectrom ; 42(9): 1207-17, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17694503

RESUMO

Collision-induced dissociation (CID) mass spectra of anions derived from several hydroxyphenyl carbaldehydes and ketones were recorded and mechanistically rationalized. For example, the spectrum of m/z 121 ion of deprotonated ortho-hydroxybenzaldehyde shows an intense peak at m/z 93 for a loss of carbon monoxide attributable to an ortho-effect mediated by a charge-directed heterolytic fragmentation mechanism. In contrast, the m/z 121 ion derived from meta and para isomers undergoes a charge-remote homolytic cleavage to eliminate an *H and form a distonic anion radical, which eventually loses CO to produce a peak at m/z 92. In fact, for the para isomer, this two-step homolytic mechanism is the most dominant fragmentation pathway. The spectrum of the meta isomer on the other hand, shows two predominant peaks at m/z 92 and 93 representing both homolytic and heterolytic fragmentations, respectively. (18)O-isotope-labeling studies confirmed that the oxygen in the CO molecule that is eliminated from the anion of meta-hydroxybenzaldehyde originates from either the aldehydic or the phenolic group. In contrast, anions of ortho-hydroxybenzaldehyde and 2-hydroxy-1-naphthaldehyde, both of which show two consecutive CO eliminations, specifically lose the carbonyl oxygen first, followed by that of the phenolic group. Anions from 2-hydroxyphenyl alkyl ketones lose a ketene by a hydrogen transfer predominantly from the alpha position. Interestingly, a very significant charge-remote 1,4-elimination of a H(2) molecule was observed from the anion derived from 2,4-dihydroxybenzaldehyde. For this mechanism to operate, a labile hydrogen atom should be available on the hydroxyl group adjacent to the carbaldehyde functionality.

11.
Polymer (Guildf) ; 48(13): 3632-3640, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19543447

RESUMO

Tailoring the surfaces of a nanocontainer with polymer brushes that have different affinities to the components of a phase-separating polymer blend should impart self-directing properties to the nanocontainers. Such nanocontainers could then be used to deliver a variety of functional species in tunable amounts and in a site-specific manner to polymer systems. This paper describes the surface modification, subsequent characterization of nanocontainers derived from ferritin, and the effects of surface modification on their self-directing properties in a binary phase separating homopolymer blend. Wild ferritin was either PEGylated or alkylated by zero-length crosslinking to its surface carboxylate groups that were activated by carbodiimide. Modification was confirmed by ion-exchange chromatography, zeta-potential measurement, and electrospray ionization mass spectrometry. FT-IR spectrometry was used to quantify the extent of PEGylation by ratioing the intensity of the C-O-C asymmetric stretching vibration from the grafted PEG to that of the carbonyl stretching vibration (amide I band) from the protein. Importantly, modified ferritin was soluble in the organic solvent dichloromethane (DCM). Modified ferritin was introduced into a polymer blend of hydrophobic and hydrophilic polymers made up of poly (desaminotyrosyl tyrosine dodecyl ester carbonate) (PDTD) and PEG by solvent casting from solution in the common solvent DCM. Polymer thin films with an average thickness of ~ 200 mum were obtained upon evaporation of the solvent. Transmission electron micrographs of microtomed polymer films demonstrated remarkable selectivity of PEGylated ferritin to PEG domains, while alkylated ferritin self-directs to the PDTD matrix.

12.
J Mass Spectrom ; 41(9): 1195-204, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16924596

RESUMO

The collision-induced dissociation (CID) mass spectra of several protonated benzylamines are described and mechanistically rationalized. Under collision-induced decomposition conditions, protonated dibenzylamine, for example, loses ammonia, thereby forming an ion of m/z 181. Deuterium labeling experiments confirmed that the additional proton transferred to the nitrogen atom during this loss of ammonia comes from the ortho positions of the phenyl rings and not from the benzylic methylene groups. A mechanism based on an initial elongation of a C--N bond at the charge center that eventually cleaves the C--N bond to form an ion/neutral complex of benzyl cation and benzylamine is proposed to rationalize the results. The complex then proceeds to dissociate in several different ways: (1) a direct dissociation to yield a benzyl cation observed at m/z 91; (2) an electrophilic attack by the benzyl cation within the complex on the phenyl ring of the benzylamine to remove a pair of electrons from the aromatic sextet to form an arenium ion, which either donates a ring proton (or deuteron when present) to the amino group forming a protonated amine, which undergoes a charge-driven heterolytic cleavage to eliminate ammonia (or benzylamine) forming a benzylbenzyl cation observed at m/z 181, or undergoes a charge-driven heterolytic cleavage to eliminate diphenylmethane and an immonium ion; and (3) a hydride abstraction from a methylene group of the neutral benzylamine to the benzylic cation to eliminate toluene and form a substituted immonium ion. Corresponding benzylamine and dibenzylamine losses observed in the spectra of protonated tribenzylamine and tetrabenzyl ammonium ion, respectively, indicate that the postulated mechanism can be widely applied. The postulated mechanisms enabled proper prediction of mass spectral fragments expected from protonated butenafine, an antifungal drug.


Assuntos
Benzilaminas/química , Amônia/química , Benzilaminas/síntese química , Deutério , Indicadores e Reagentes , Naftalenos/química , Prótons , Espectrometria de Massas por Ionização por Electrospray
13.
Rapid Commun Mass Spectrom ; 20(15): 2265-70, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16804956

RESUMO

The ion observed at m/z 145 when product ion spectra of iodobenzoate anions are recorded using ion-trap mass spectrometers corresponds to the adduct ion [I(H(2)O)](-). The elements of water required for the formation of this adduct do not originate from the precursor ion but from traces of moisture present in the helium buffer gas. A collision-induced decomposition (CID) spectrum recorded from the [M-H](-) ion (m/z 251) derived from 3-iodo[2,4,5,6-(2)H(4)]benzoic acid also showed an ion at m/z 145. This observation confirmed that the m/z 145 is not a product ion resulting from a direct neutral loss from the carboxylate anion. (79)Bromobenzoate anions produce similar results showing an ion at m/z 97 for [(79)Br(H(2)O)](-). The ion-molecule reaction observed here is unique to ion-trap mass spectrometers since a corresponding ion was not observed under our experimental conditions in spectra recorded with in-space tandem mass spectrometers such as triple quadrupole or quadrupole time-of-flight instruments.

14.
J Chem Ecol ; 30(3): 577-88, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15139309

RESUMO

Analyses of pygidial gland contents of two species of a previously uninvestigated family of beetles (Trachypachidae) by Gas Chromatography-Mass Spectrometry (GC-MS) revealed that their chemistry is similar to that reported from many members of the family Carabidae. Nevertheless, the composition of defensive gland fluids of the two species Trachypachus slevini and T. gibbsii differs sufficiently to distinguish between the two species solely on the basis of their defensive chemistry. The major components of T. slevini glandular fluid are methacrylic, tiglic, and octanoic (= caprylic) acids, together with the hydrocarbon (Z)-9-pentacosene. In contrast, the glandular contents of T. gibbsii contain a rather unique mixture of polar and nonpolar compounds, the principal constituents of which are methacrylic and ethacrylic acids (= 2-ethylacrylic acid), together with 2-phenylethanol, 2-phenylethyl methacrylate, 2-phenylethyl ethacrylate, and (Z)-9-pentacosene.


Assuntos
Besouros/fisiologia , Glândulas Exócrinas/química , Glândulas Exócrinas/fisiologia , Animais , Caprilatos/análise , Crotonatos/análise , Cromatografia Gasosa-Espectrometria de Massas , Hemiterpenos , Hidrocarbonetos/análise , Metacrilatos/análise , Peso Molecular , Padrões de Referência , Especificidade da Espécie , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA