Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Biochemistry (Mosc) ; 89(1): 159-172, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38467552

RESUMO

N6-methyladenosine (m6A) is one of the most common modifications in both eukaryotic and prokaryotic mRNAs. It has been experimentally confirmed that m6A methylation is involved in the regulation of stability and translation of various mRNAs. Until recently, the majority of m6A-related studies have been focused on the cytoplasmic functions of this modification. Here, we review new data on the role of m6A in several key biological processes taking place in the cell nucleus, such as transcription, chromatin organization, splicing, nuclear-cytoplasmic transport, and R-loop metabolism. Based on analysis of these data, we suggest that m6A methylation of nuclear RNAs is another level of gene expression regulation which, together with DNA methylation and histone modifications, controls chromatin structure and functioning in various biological contexts.


Assuntos
Adenosina/análogos & derivados , Metiltransferases , RNA Nuclear , Metiltransferases/genética , RNA Nuclear/metabolismo , Metilação , Regulação da Expressão Gênica , RNA Mensageiro/metabolismo
2.
Eur J Pediatr ; 183(5): 2311-2324, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38427038

RESUMO

Infantile functional gastrointestinal disorders, such as colic, constipation, diarrhea, and gastroesophageal reflux (regurgitation), often occur in early infancy and, representing one of the causes of significant parental anxiety, lead to a significant strain on the healthcare resources. In this study, we aimed to evaluate the effects of Lactobacillus reuteri drops (L. reuteri NCIMB 30351) on the symptoms of infantile colic, constipation, diarrhea, and gastroesophageal reflux, as well as on the levels of intestinal microbiota in full-term newborns during the first months of life. A randomized, placebo-controlled, single-masked (blinded), post-marketing clinical study was conducted in two clinical units-Children's City Clinical Hospital of Moscow and Medical Center "St. Andrew's Hospitals-NEBOLIT" from March 2020 to May 2022 in 90 infants aged from 1 to 4 months (mean age (± SD) 12.3 ± 5.09 weeks; 53.3% females, 46.7% males). Patients with colic, regurgitation (single symptom or combination of several symptoms), and constipation or diarrhea were randomly allocated in two parallel arms to receive either 5 drops (2 × 108 colony forming unit) of L. reuteri NCIMB 30351 (n = 60) or masked placebo (n = 30) for 25 consecutive days. Two treatment arms had equal numbers of patients with constipation and diarrhea (n = 30 each). Daily crying times and their duration, evacuations, and regurgitations were recorded in a structured diary. The levels of gut microbiota were analyzed by deep sequencing of bacterial 16S rRNA gene. Infants with colic receiving supplementary L. reuteri NCIMB 30351 for 25 days had significant reduction in the numbers of colic (change from baseline - 6.3 (7.34) vs - 3.0 (7.29) in placebo, P < 0.05) and numbers of crying cases and mean duration of crying (decrease from baseline - 144 (70.7) minutes, lower in the diarrhea subgroup than in constipation infants, compared with - 80 (58.9) in placebo, P < 0.0001), as well as regurgitation numbers (decreased by - 4.8 (2.49) with L. reuteri vs - 3 (7.74) with placebo). We also observed increased numbers of evacuations in infants with constipation (L. reuteri 2.2 (2.4) vs 0.9 (1.06) in placebo, P < 0.05). There was a remarkable reduction of evacuations in infants with diarrhea, while not statistically significant. The analysis of bacterial 16S rRNA gene in the collected samples showed that L. reuteri positively influences the proportions of prevalent species, while it negatively affects both conditionally pathogenic and commensal microbes. Additional in vitro test for formation of Clostridium colonies in the presence of the probiotic demonstrated that L. reuteri effectively inhibits the growth of pathogenic Clostridium species. No adverse events were reported in this study.   Conclusion: The uptake of L. reuteri NCIMB 30351 leads to a significant reduction in the number of regurgitations, feeding-induced constipations, and diarrhea as well as mean daily numbers of crying and crying duration in infants during the first months of life. Our results suggest that L. reuteri NCIMB 30351 represents a safe and effective treatment for colic in newborns.  Trial registration: ClinicalTrials.gov : NCT04262648. What is Known: • Infantile functional gastrointestinal disorders, such as colic, constipation, diarrhea, and gastroesophageal reflux (regurgitation), often occur in early infancy and, represent one of the causes of significant parental anxiety. • A number of studies have shown that both the composition and diversity of the intestinal microbiota play important roles in the development and function of the gastrointestinal tract. What is New: • The uptake of L. reuteri NCIMB 30351 leads to a significant reduction in the number of regurgitations, feeding-induced constipations, and diarrhea as well as mean daily numbers of crying and crying duration in infants during the first months of life. • L. reuteri positively influences the proportions of prevalent species, while it negatively affects both conditionally pathogenic and commensal microbes in gut microbiota.


Assuntos
Gastroenteropatias , Microbioma Gastrointestinal , Limosilactobacillus reuteri , Probióticos , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Cólica/terapia , Cólica/microbiologia , Constipação Intestinal/terapia , Constipação Intestinal/microbiologia , Diarreia/microbiologia , Diarreia/terapia , Refluxo Gastroesofágico/microbiologia , Refluxo Gastroesofágico/terapia , Gastroenteropatias/microbiologia , Gastroenteropatias/terapia , Probióticos/uso terapêutico , Probióticos/administração & dosagem , Método Simples-Cego , Resultado do Tratamento , Estudos Prospectivos
3.
ACS Omega ; 9(5): 5485-5495, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38343990

RESUMO

Heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2/B1) is a pivotal player in m6A recognition, RNA metabolism, and antiviral responses. In the context of cancer, overexpression of hnRNPA2/B1, abnormal RNA levels, and m6A depositions are evident. This study focuses on two significant nonsynonymous single nucleotide polymorphisms (nsSNPs) within hnRNPA2/B1, namely, F66L and E92K. Our structural analyses reveal decreased stability in these mutants, with E92K being predicted to undergo destabilizing post-translational methylation. Furthermore, our extensive analysis of 44,239 tumor samples from the COSMIC database uncovers that amino acid position 92 exhibits the second-highest mutation frequency within hnRNPA2/B1, particularly associated with breast and lung cancers. This experimental data aligns with our theoretical studies, highlighting the substantial impact of the nsSNP at position 92 on hnRNPA2/B1's stability and functionality. Given the critical role of pre-mRNA splicing, transcription, and translation regulation in cellular function, it is important to assess the impact of these nsSNPs on the stability and function of the hnRNPA2/B1 protein to design more efficient anticancer therapeutics.

4.
Methods Mol Biol ; 2528: 127-143, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35704189

RESUMO

R-loops are three-stranded nucleic acid structures consisting of an RNA-DNA hybrid and an unpaired strand of nontemplate DNA that represent a major source of genomic instability and are involved in regulation of several important biological processes in eukaryotic cells. A growing body of experimental evidence suggests that RNA moieties of RNA-DNA hybrids may convey RNA modifications influencing various aspects of R-loop biology. Here we present a protocol for quantitative analysis of RNA modifications on RNA-DNA hybrids using stable-isotope dilution ultraperformance liquid chromatography coupled with tandem mass spectrometry (SID-UPLC-MS/MS). Supplemented by other techniques, this method can be instrumental in deciphering the roles of RNA modifications in R-loop metabolism.


Assuntos
RNA , Humanos , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , DNA/química , RNA/genética , Espectrometria de Massas em Tandem
5.
Methods Mol Biol ; 2528: 329-344, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35704202

RESUMO

N6-methyladenosine (m6A) is an RNA modification essential for posttranscriptional regulation of gene expression in eukaryotes. We recently demonstrated that m6A decorates the RNA components of R-loops, specific nucleic acid structures consisting of an RNA/DNA hybrid and a single strand of non-template DNA, that represent a major source of genetic instability and, at the same time, contribute to regulation of gene expression in mammalian cells. According to growing body of experimental evidence, adenosine methylation affects stability of these structures and potentially influences various aspects of their metabolism. Here, we present two methods for detection and analysis of m6A-containing RNA/DNA hybrids: an immunostaining protocol allowing investigation of their spatial distribution in eukaryotic cells and m6A-DNA immunoprecipitation (DIP), an antibody-based technique that permits their genome mapping and locus-specific analysis. In addition to the m6A-focused studies, these methodologies can also contribute to elucidating the functional roles of other RNA modifications in R-loop biology.


Assuntos
DNA , RNA , Adenosina/análogos & derivados , Adenosina/metabolismo , Animais , DNA/química , DNA/genética , Imunoprecipitação , Mamíferos/genética , RNA/química
7.
Commun Biol ; 4(1): 691, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099857

RESUMO

Chromatin of male and female gametes undergoes a number of reprogramming events during the transition from germ cell to embryonic developmental programs. Although the rearrangement of DNA methylation patterns occurring in the zygote has been extensively characterized, little is known about the dynamics of DNA modifications during spermatid maturation. Here, we demonstrate that the dynamics of 5-carboxylcytosine (5caC) correlate with active transcription of LINE-1 retroelements during murine spermiogenesis. We show that the open reading frames of active and evolutionary young LINE-1s are 5caC-enriched in round spermatids and 5caC is eliminated from LINE-1s and spermiogenesis-specific genes during spermatid maturation, being simultaneously retained at promoters and introns of developmental genes. Our results reveal an association of 5caC with activity of LINE-1 retrotransposons suggesting a potential direct role for this DNA modification in fine regulation of their transcription.


Assuntos
Citosina/análogos & derivados , Elementos Nucleotídeos Longos e Dispersos , Fases de Leitura Aberta , Espermátides/metabolismo , Animais , Citosina/metabolismo , Masculino , Camundongos , Espermátides/citologia , Espermatogênese , Transcrição Gênica
8.
Methods Mol Biol ; 2198: 3-13, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32822018

RESUMO

5-Methylcytosine (5mC) is an epigenetic mark known to contribute to the regulation of gene expression in a wide range of biological systems. Ten Eleven Translocation (TET) dioxygenases oxidize 5mC to 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine in metazoans and fungi. Moreover, two recent reports imply the existence of other species of modified cytosine in unicellular alga Chlamydomonas reinhardtii and malaria parasite Plasmodium falciparum. Here we provide an overview of the spectrum of cytosine modifications and their roles in demethylation of DNA and regulation of gene expression in different eukaryotic organisms.


Assuntos
Citosina , Metilação de DNA , Epigênese Genética , Eucariotos/genética , Citosina/metabolismo , DNA/genética , DNA/metabolismo , Eucariotos/metabolismo , Humanos
9.
Methods Mol Biol ; 2198: 15-25, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32822019

RESUMO

Cytosine DNA methylation (5-methylcytsone, 5mC) is the major DNA modification found in the genomes of animals and plants. Although the roles of 5mC and its oxidized derivatives in the regulation of gene expression are relatively well attested and extensively explored, a number of recent studies imply that noncytosine DNA modifications may also convey specific biological functions and act as "epigenetic" marks in multicellular organisms. Here we review experimental evidence for the presence of noncytosine epigenetic modifications in metazoans and plants focusing on two "unusual" DNA bases, 5-hydroxymethyluracil (5hmU) and N6-methyladenine (6mA), and suggest potential explanations for inconsistencies in the currently available data on abundance and potential biological roles of these DNA modifications in mammals.


Assuntos
Metilação de DNA , Epigênese Genética , Eucariotos/genética , DNA/genética , DNA/metabolismo , Epigenômica/métodos , Eucariotos/metabolismo
10.
Methods Mol Biol ; 2198: 169-181, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32822031

RESUMO

Immunocytochemistry can be instrumental in assessing the spatial distribution and relative levels of epigenetic modifications. Although conventional immunostaining has been utilized for the detection of 5-methylcytosine (5mC) in animal cells and tissues for several decades, the sensitivity of techniques based on the use of fluorophore-conjugated secondary antibodies is not always sufficient for studying DNA modifications that are less abundant in DNA compared with 5mC. Here we describe a protocol for sensitive immunocytochemistry that utilizes peroxidase-conjugated secondary antibodies coupled with catalyzed reporter deposition and allows for detection of low-abundance noncanonical bases (e.g., 5-carboxylcytosine, 5caC, 5-formylcytosine, 5fC, 5-hydroxymethyluracil, 5hmU) in mammalian DNA. This method can be employed for evaluation of the levels and nuclear distribution of DNA modifications and permits their colocalization with protein markers in animal cells.


Assuntos
DNA/imunologia , Imuno-Histoquímica/métodos , 5-Metilcitosina/metabolismo , Animais , Anticorpos/metabolismo , Núcleo Celular/metabolismo , Citosina/análogos & derivados , Citosina/análise , DNA/genética , Metilação de DNA/imunologia , Epigênese Genética/genética , Humanos , Pentoxil (Uracila)/análogos & derivados , Pentoxil (Uracila)/análise , Peroxidase/química
11.
Methods Mol Biol ; 2198: 311-319, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32822041

RESUMO

DNA methylation (5-methylcytosine, 5mC) is involved in regulation of a wide range of biological processes. TET proteins can oxidize 5mC to 5-hydroxymethylcytosine, 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Although both 5fC and 5caC serve as intermediates in active demethylation pathway, growing body of experimental evidence indicate that these DNA modifications may also interact with specific sets of reader proteins and therefore may represent bona fide epigenetic marks. Despite a number of single-base resolution techniques have recently been proposed for 5fC/5caC mapping, antibody-based approaches still represent a relatively simple and plausible alternative for the analysis of genomic distribution of these DNA modifications. Here, we describe a protocol for 5caC DNA immunoprecipitation (5caC DIP) that can be used for both locus-specific and genome-wide assessment of 5caC distribution. In combination with mass spectrometry-based techniques and single base resolution mapping methods, this approach may contribute to elucidating the role of 5caC in development, differentiation, and tumorigenesis.


Assuntos
Imunoprecipitação da Cromatina/métodos , Citosina/análogos & derivados , Metilação de DNA/imunologia , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animais , Citosina/análise , Citosina/metabolismo , DNA/imunologia , DNA/metabolismo , Humanos , Imunoprecipitação/métodos
13.
Nat Genet ; 52(1): 48-55, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31844323

RESUMO

R-loops are nucleic acid structures formed by an RNA:DNA hybrid and unpaired single-stranded DNA that represent a source of genomic instability in mammalian cells1-4. Here we show that N6-methyladenosine (m6A) modification, contributing to different aspects of messenger RNA metabolism5,6, is detectable on the majority of RNA:DNA hybrids in human pluripotent stem cells. We demonstrate that m6A-containing R-loops accumulate during G2/M and are depleted at G0/G1 phases of the cell cycle, and that the m6A reader promoting mRNA degradation, YTHDF2 (ref. 7), interacts with R-loop-enriched loci in dividing cells. Consequently, YTHDF2 knockout leads to increased R-loop levels, cell growth retardation and accumulation of γH2AX, a marker for DNA double-strand breaks, in mammalian cells. Our results suggest that m6A regulates accumulation of R-loops, implying a role for this modification in safeguarding genomic stability.


Assuntos
Adenosina/análogos & derivados , DNA/química , Instabilidade Genômica , Células-Tronco Pluripotentes/metabolismo , Estabilidade de RNA/efeitos dos fármacos , Proteínas de Ligação a RNA/fisiologia , RNA/química , Adenosina/farmacologia , Animais , DNA/efeitos dos fármacos , DNA/genética , Dano ao DNA , Humanos , Camundongos , Camundongos Knockout , Mitose , Células-Tronco Pluripotentes/citologia , RNA/efeitos dos fármacos , RNA/genética , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
14.
Sci Rep ; 9(1): 19314, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31848418

RESUMO

5-Methylcytosine (5mC) is an epigenetic modification involved in regulation of gene expression in metazoans and plants. Iron-(II)/α-ketoglutarate-dependent dioxygenases can oxidize 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Although these oxidized forms of 5mC may serve as demethylation intermediates or contribute to transcriptional regulation in animals and fungi, experimental evidence for their presence in plant genomes is ambiguous. Here, employing reversed-phase HPLC coupled with sensitive mass spectrometry, we demonstrated that, unlike 5caC, both 5hmC and 5fC are detectable in non-negligible quantities in the DNA of a conifer, Norway spruce. Remarkably, whereas 5hmC content of spruce DNA is approximately 100-fold lower relative to human colorectal carcinoma cells, the levels of both - 5fC and a thymine base modification, 5-hydroxymethyluracil, are comparable in these systems. We confirmed the presence of modified DNA bases by immunohistochemistry in Norway spruce buds based on peroxidase-conjugated antibodies and tyramide signal amplification. Our results reveal the presence of specific range of noncanonical DNA bases in conifer genomes implying potential roles for these modifications in plant development and homeostasis.


Assuntos
Cromatografia Líquida de Alta Pressão , Epigênese Genética/genética , Genoma de Planta/genética , Picea/genética , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Citosina/análogos & derivados , Citosina/metabolismo , Metilação de DNA/genética , Espectrometria de Massas , Noruega , Picea/metabolismo
15.
Front Cell Neurosci ; 12: 388, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30510501

RESUMO

Cellular quiescence is a reversible, non-cycling state controlled by epigenetic, transcriptional and niche-associated molecular factors. Quiescence is a condition where molecular signaling pathways maintain the poised cell-cycle state whilst enabling rapid cell cycle re-entry. To achieve therapeutic breakthroughs in oncology it is crucial to decipher these molecular mechanisms employed by the cancerous milieu to control, maintain and gear stem cells towards re-activation. Cancer stem-like cells (CSCs) have been extensively studied in most malignancies, including glioma. Here, the aberrant niche activities skew the quiescence/activation equilibrium, leading to rapid tumor relapse after surgery and/or chemotherapy. Unraveling quiescence mechanisms promises to afford prevention of (often multiple) relapses, a key problem in current glioma treatment. This review article covers the current knowledge regarding normal and aberrant cellular quiescence control whilst also exploring how different molecular mechanisms and properties of the neighboring cells can influence the molecular processes behind glioma stem cell quiescence.

17.
Front Cell Dev Biol ; 6: 26, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29623275

RESUMO

The patterns of 5-methylcytosine (5mC) and its oxidized derivatives, 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine (5caC) are reportedly altered in a range of cancers. Likewise, Wilms' Tumor protein 1 (WT1), a transcription factor essential for urogenital, epicardium, and kidney development exhibits aberrant expression in multiple tumors. Interestingly, WT1 directly interacts with TET proteins that catalyze the enzymatic oxidation of 5mC and exhibits high affinity for 5caC-containing DNA substrates in vitro. Here we review recent developments in the fields of Tet-dependent 5mC oxidation and WT1 biology and explore potential perspectives for studying the interplay between TETs and WT1 in brain tumors.

18.
Front Cell Dev Biol ; 6: 27, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29616219

RESUMO

5-methylcytosine (5mC) is the best understood DNA modification and is generally believed to be associated with repression of gene expression. Over the last decade, sequentially oxidized forms of 5mC (oxi-mCs) have been discovered within the genomes of vertebrates. Their discovery was accompanied by that of the ten-eleven translocation (TET) methylcytosine dioxygenases, the enzymes that catalyze the formation of the oxi-mCs. Although a number of studies performed on different vertebrate models and embryonic stem cells demonstrated that both TET enzymes and oxi-mCs are likely to be important for several developmental processes it is currently unclear whether their developmental roles are conserved among vertebrates. Here, we summarize recent developments in this field suggesting that biological roles of TETs/oxi-mCs may significantly differ between mice and zebrafish. Thus, although the role of TET proteins in late organogenesis has been documented for both these systems; unlike in mice the enzymatic oxidation of 5mC does not seem to be involved in zygotic reprogramming or gastrulation in zebrafish. Our analysis may provide an insight into the general principles of epigenetic regulation of animal development and cellular differentiation.

19.
J Vis Exp ; (127)2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28930980

RESUMO

For several decades, 5-methylcytosine (5mC) has been thought to be the only DNA modification with a functional significance in metazoans. The discovery of enzymatic oxidation of 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) as well as detection of N6-methyladenine (6mA) in the DNA of multicellular organisms provided additional degrees of complexity to the epigenetic research. According to a growing body of experimental evidence, these novel DNA modifications may play specific roles in different cellular and developmental processes. Importantly, as some of these marks (e. g. 5hmC, 5fC and 5caC) exhibit tissue- and developmental stage-specific occurrence in vertebrates, immunochemistry represents an important tool allowing assessment of spatial distribution of DNA modifications in different biological contexts. Here the methods for computational analysis of DNA modifications visualized by immunostaining followed by confocal microscopy are described. Specifically, the generation of 2.5 dimension (2.5D) signal intensity plots, signal intensity profiles, quantification of staining intensity in multiple cells and determination of signal colocalization coefficients are shown. Collectively, these techniques may be operational in evaluating the levels and localization of these DNA modifications in the nucleus, contributing to elucidating their biological roles in metazoans.


Assuntos
DNA/genética , Microscopia Confocal/métodos , Humanos , Imuno-Histoquímica
20.
Epigenetics ; 12(4): 277-286, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28267381

RESUMO

Patterns of DNA methylation (5-methylcytosine, 5mC) are rearranged during differentiation contributing to the regulation of cell type-specific gene expression. TET proteins oxidize 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Both 5fC and 5caC can be recognized and excised from DNA by thymine-DNA glycosylase (TDG) followed by the subsequent incorporation of unmodified cytosine into the abasic site via the base excision repair (BER) pathway. We previously demonstrated that 5caC accumulates during lineage specification of neural stem cells (NSCs) suggesting that such active demethylation pathway is operational in this system; however, it is still unknown if TDG/BER-dependent demethylation is used during other types of cellular differentiation. Here we analyze dynamics of the global levels of 5hmC and 5caC during differentiation of human pluripotent stem cells toward hepatic endoderm. We show that, similar to differentiating NSCs, 5caC transiently accumulates during hepatic differentiation. The levels of 5caC increase during specification of foregut, peak at the stage of hepatic endoderm commitment, and drop in differentiating cells concurrently with the onset of expression of α fetoprotein, a marker of committed hepatic progenitors. Moreover, we show that 5caC accumulates at promoter regions of several genes expressed during hepatic specification at differentiation stages corresponding to the beginning of their expression. Our data indicate that transient 5caC accumulation is a common feature of 2 different types (neural/glial and endoderm/hepatic) of cellular differentiation. This suggests that oxidation of 5mC may represent a general mechanism of rearrangement of 5mC profiles during lineage specification of somatic cells in mammals.


Assuntos
Diferenciação Celular , Citosina/análogos & derivados , Metilação de DNA , Reparo do DNA , Fígado/citologia , Animais , Linhagem da Célula , Citosina/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA