Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
NAR Genom Bioinform ; 6(2): lqae072, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38895105

RESUMO

As the sister group to all other animals, ctenophores (comb jellies) are important for understanding the emergence and diversification of numerous animal traits. Efforts to explore the evolutionary processes that promoted diversification within Ctenophora are hindered by undersampling genomic diversity within this clade. To address this gap, we present the sequence, assembly and initial annotation of the genome of Beroe ovata. Beroe possess unique morphology, behavior, ecology and development. Unlike their generalist carnivorous kin, beroid ctenophores feed exclusively on other ctenophores. Accordingly, our analyses revealed a loss of chitinase, an enzyme critical for the digestion of most non-ctenophore prey, but superfluous for ctenophorivores. Broadly, our genomic analysis revealed that extensive gene loss and changes in gene regulation have shaped the unique biology of B. ovata. Despite the gene losses in B. ovata, our phylogenetic analyses on photosensitive opsins and several early developmental regulatory genes show that these genes are conserved in B. ovata. This additional sampling contributes to a more complete reconstruction of the ctenophore ancestor and points to the need for extensive comparisons within this ancient and diverse clade of animals. To promote further exploration of these data, we present BovaDB (http://ryanlab.whitney.ufl.edu/bovadb/), a portal for the B. ovata genome.

2.
Commun Biol ; 7(1): 203, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374160

RESUMO

Regenerative potential is widespread but unevenly distributed across animals. However, our understanding of the molecular mechanisms underlying regenerative processes is limited to a handful of model organisms, restricting robust comparative analyses. Here, we conduct a time course of RNA-seq during whole body regeneration in Mnemiopsis leidyi (Ctenophora) to uncover gene expression changes that correspond with key events during the regenerative timeline of this species. We identified several genes highly enriched in this dataset beginning as early as 10 minutes after surgical bisection including transcription factors in the early timepoints, peptidases in the middle timepoints, and cytoskeletal genes in the later timepoints. We validated the expression of early response transcription factors by whole mount in situ hybridization, showing that these genes exhibited high expression in tissues surrounding the wound site. These genes exhibit a pattern of transient upregulation as seen in a variety of other organisms, suggesting that they may be initiators of an ancient gene regulatory network linking wound healing to the initiation of a regenerative response.


Assuntos
Ctenóforos , Animais , Ctenóforos/genética , Cicatrização , Fatores de Transcrição
3.
Proteomics ; : e2300397, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329168

RESUMO

This Dataset Brief describes the computational prediction of protein structures for the ctenophore Mnemiopsis leidyi. Here, we report the proteome-scale generation of 15,333 protein structure predictions using AlphaFold, as well as an updated implementation of publicly available search, manipulation, and visualization tools for these protein structure predictions through the Mnemiopsis Genome Project Portal (https://research.nhgri.nih.gov/mnemiopsis). The utility of these predictions is demonstrated by highlighting comparisons to experimentally determined structures for the light-sensitive protein mnemiopsin 1 and the ionotropic glutamate receptor (iGluR). The application of these novel protein structure prediction methods will serve to further position non-bilaterian species such as Mnemiopsis as powerful model systems for the study of early animal evolution and human health.

4.
Biophys J ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291751

RESUMO

Here we explore the evolutionary origins of fast N-type ball-and-chain inactivation in Shaker (Kv1) K+ channels by functionally characterizing Shaker channels from the ctenophore (comb jelly) Mnemiopsis leidyi. Ctenophores are the sister lineage to other animals and Mnemiopsis has >40 Shaker-like K+ channels, but they have not been functionally characterized. We identified three Mnemiopsis channels (MlShak3-5) with N-type inactivation ball-like sequences at their N termini and functionally expressed them in Xenopus oocytes. Two of the channels, MlShak4 and MlShak5, showed rapid inactivation similar to cnidarian and bilaterian Shakers with rapid N-type inactivation, whereas MlShak3 inactivated ∼100-fold more slowly. Fast inactivation in MlShak4 and MlShak5 required the putative N-terminal inactivation ball sequences. Furthermore, the rate of fast inactivation in these channels depended on the number of inactivation balls/channel, but the rate of recovery from inactivation did not. These findings closely match the mechanism of N-type inactivation first described for Drosophila Shaker in which 1) inactivation balls on the N termini of each subunit can independently block the pore, and 2) only one inactivation ball occupies the pore binding site at a time. These findings suggest classical N-type activation evolved in Shaker channels at the very base of the animal phylogeny in a common ancestor of ctenophores, cnidarians, and bilaterians and that fast-inactivating Shakers are therefore a fundamental type of animal K+ channel. Interestingly, we find evidence from functional co-expression experiments and molecular dynamics that MlShak4 and MlShak5 do not co-assemble, suggesting that Mnemiopsis has at least two functionally independent N-type Shaker channels.

5.
Mol Biol Evol ; 40(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37288606

RESUMO

Differential regulation of gene expression has produced the astonishing diversity of life on Earth. Understanding the origin and evolution of mechanistic innovations for control of gene expression is therefore integral to evolutionary and developmental biology. Cytoplasmic polyadenylation is the biochemical extension of polyadenosine at the 3'-end of cytoplasmic mRNAs. This process regulates the translation of specific maternal transcripts and is mediated by the Cytoplasmic Polyadenylation Element-Binding Protein family (CPEBs). Genes that code for CPEBs are amongst a very few that are present in animals but missing in nonanimal lineages. Whether cytoplasmic polyadenylation is present in non-bilaterian animals (i.e., sponges, ctenophores, placozoans, and cnidarians) remains unknown. We have conducted phylogenetic analyses of CPEBs, and our results show that CPEB1 and CPEB2 subfamilies originated in the animal stem lineage. Our assessment of expression in the sea anemone, Nematostella vectensis (Cnidaria), and the comb jelly, Mnemiopsis leidyi (Ctenophora), demonstrates that maternal expression of CPEB1 and the catalytic subunit of the cytoplasmic polyadenylation machinery (GLD2) is an ancient feature that is conserved across animals. Furthermore, our measurements of poly(A)-tail elongation reveal that key targets of cytoplasmic polyadenylation are shared between vertebrates, cnidarians, and ctenophores, indicating that this mechanism orchestrates a regulatory network that is conserved throughout animal evolution. We postulate that cytoplasmic polyadenylation through CPEBs was a fundamental innovation that contributed to animal evolution from unicellular life.


Assuntos
Ctenóforos , Anêmonas-do-Mar , Animais , Filogenia , Poliadenilação , Ctenóforos/genética , Anêmonas-do-Mar/genética
6.
Mol Biol Evol ; 40(2)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36740225

RESUMO

Innexins facilitate cell-cell communication by forming gap junctions or nonjunctional hemichannels, which play important roles in metabolic, chemical, ionic, and electrical coupling. The lack of knowledge regarding the evolution and role of these channels in ctenophores (comb jellies), the likely sister group to the rest of animals, represents a substantial gap in our understanding of the evolution of intercellular communication in animals. Here, we identify and phylogenetically characterize the complete set of innexins of four ctenophores: Mnemiopsis leidyi, Hormiphora californensis, Pleurobrachia bachei, and Beroe ovata. Our phylogenetic analyses suggest that ctenophore innexins diversified independently from those of other animals and were established early in the emergence of ctenophores. We identified a four-innexin genomic cluster, which was present in the last common ancestor of these four species and has been largely maintained in these lineages. Evidence from correlated spatial and temporal gene expression of the M. leidyi innexin cluster suggests that this cluster has been maintained due to constraints related to gene regulation. We describe the basic electrophysiological properties of putative ctenophore hemichannels from muscle cells using intracellular recording techniques, showing substantial overlap with the properties of bilaterian innexin channels. Together, our results suggest that the last common ancestor of animals had gap junctional channels also capable of forming functional innexin hemichannels, and that innexin genes have independently evolved in major lineages throughout Metazoa.


Assuntos
Ctenóforos , Animais , Ctenóforos/genética , Filogenia , Transdução de Sinais , Genoma , Comunicação Celular/fisiologia
7.
Nat Commun ; 14(1): 885, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797294

RESUMO

Cnidocytes are the explosive stinging cells unique to cnidarians (corals, jellyfish, etc). Specialized for prey capture and defense, cnidocytes comprise a group of over 30 morphologically and functionally distinct cell types. These unusual cells are iconic examples of biological novelty but the developmental mechanisms driving diversity of the stinging apparatus are poorly characterized, making it challenging to understand the evolutionary history of stinging cells. Using CRISPR/Cas9-mediated genome editing in the sea anemone Nematostella vectensis, we show that a single transcription factor (NvSox2) acts as a binary switch between two alternative stinging cell fates. Knockout of NvSox2 causes a transformation of piercing cells into ensnaring cells, which are common in other species of sea anemone but appear to have been silenced in N. vectensis. These results reveal an unusual case of single-cell atavism and expand our understanding of the diversification of cell type identity.


Assuntos
Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/metabolismo , Evolução Biológica , Regulação da Expressão Gênica , Fatores de Transcrição/metabolismo , Diferenciação Celular
8.
Genome Biol Evol ; 15(3)2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36669828

RESUMO

Ion channels are highly diverse in the cnidarian model organism Nematostella vectensis (Anthozoa), but little is known about the evolutionary origins of this channel diversity and its conservation across Cnidaria. Here, we examined the evolution of voltage-gated K+ channels in Cnidaria by comparing genomes and transcriptomes of diverse cnidarian species from Anthozoa and Medusozoa. We found an average of over 40 voltage-gated K+ channel genes per species, and a phylogenetic reconstruction of the Kv, KCNQ, and Ether-a-go-go (EAG) gene families identified 28 voltage-gated K+ channels present in the last common ancestor of Anthozoa and Medusozoa (23 Kv, 1 KCNQ, and 4 EAG). Thus, much of the diversification of these channels took place in the stem cnidarian lineage prior to the emergence of modern cnidarian classes. In contrast, the stem bilaterian lineage, from which humans evolved, contained no more than nine voltage-gated K+ channels. These results hint at a complexity to electrical signaling in all cnidarians that contrasts with the perceived anatomical simplicity of their neuromuscular systems. These data provide a foundation from which the function of these cnidarian channels can be investigated, which will undoubtedly provide important insights into cnidarian physiology.


Assuntos
Cnidários , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Anêmonas-do-Mar , Animais , Humanos , Cnidários/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Filogenia , Anêmonas-do-Mar/genética , Genoma , Transdução de Sinais
9.
Genome Biol Evol ; 15(1)2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36508343

RESUMO

Hox and ParaHox transcription factors are important for specifying cell fates along the primary body axes during the development of most animals. Within Cnidaria, much of the research on Hox/ParaHox genes has focused on Anthozoa (anemones and corals) and Hydrozoa (hydroids) and has concentrated on the evolution and function of cnidarian Hox genes in relation to their bilaterian counterparts. Here we analyze together the full complement of Hox and ParaHox genes from species representing all four medusozoan classes (Staurozoa, Cubozoa, Hydrozoa, and Scyphozoa) and both anthozoan classes (Octocorallia and Hexacorallia). Our results show that Hox genes involved in patterning the directive axes of anthozoan polyps are absent in the stem leading to Medusozoa. For the first time, we show spatial and temporal expression patterns of Hox and ParaHox genes in the upside-down jellyfish Cassiopea xamachana (Scyphozoa), which are consistent with diversification of medusozoan Hox genes both from anthozoans and within medusozoa. Despite unprecedented taxon sampling, our phylogenetic analyses, like previous studies, are characterized by a lack of clear homology between most cnidarian and bilaterian Hox and Hox-related genes. Unlike previous studies, we propose the hypothesis that the cnidarian-bilaterian ancestor possessed a remarkably large Hox complement and that extensive loss of Hox genes was experienced by both cnidarian and bilaterian lineages.


Assuntos
Antozoários , Cnidários , Animais , Cnidários/genética , Filogenia , Antozoários/genética , Genes Homeobox , Evolução Molecular
10.
Genome Biol Evol ; 14(10)2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36161313

RESUMO

Echinometra is the most widespread genus of sea urchin and has been the focus of a wide range of studies in ecology, speciation, and reproduction. However, available genetic data for this genus are generally limited to a few select loci. Here, we present a chromosome-level genome assembly based on 10x Genomics, PacBio, and Hi-C sequencing for Echinometra sp. EZ from the Persian/Arabian Gulf. The genome is assembled into 210 scaffolds totaling 817.8 Mb with an N50 of 39.5 Mb. From this assembly, we determined that the E. sp. EZ genome consists of 2n = 42 chromosomes. BUSCO analysis showed that 95.3% of BUSCO genes were complete. Ab initio and transcript-informed gene modeling and annotation identified 29,405 genes, including a conserved Hox cluster. E. sp. EZ can be found in high-temperature and high-salinity environments, and we therefore compared E. sp. EZ gene families and transcription factors associated with environmental stress response ("defensome") with other echinoid species with similar high-quality genomic resources. While the number of defensome genes was broadly similar for all species, we identified strong signatures of positive selection in E. sp. EZ noncoding elements near genes involved in environmental response pathways as well as losses of transcription factors important for environmental response. These data provide key insights into the biology of E. sp. EZ as well as the diversification of Echinometra more widely and will serve as a useful tool for the community to explore questions in this taxonomic group and beyond.


Assuntos
Cromossomos , Ouriços-do-Mar , Animais , Cromossomos/genética , Anotação de Sequência Molecular , Sequências Reguladoras de Ácido Nucleico , Ouriços-do-Mar/genética , Fatores de Transcrição/genética
11.
Sci Rep ; 12(1): 9841, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701521

RESUMO

To date, genomic analyses in amoebozoans have been mostly limited to model organisms or medically important lineages. Consequently, the vast diversity of Amoebozoa genomes remain unexplored. A draft genome of Cochliopodium minus, an amoeba characterized by extensive cellular and nuclear fusions, is presented. C. minus has been a subject of recent investigation for its unusual sexual behavior. Cochliopodium's sexual activity occurs during vegetative stage making it an ideal model for studying sexual development, which is sorely lacking in the group. Here we generate a C. minus draft genome assembly. From this genome, we detect a substantial number of lateral gene transfer (LGT) instances from bacteria (15%), archaea (0.9%) and viruses (0.7%) the majority of which are detected in our transcriptome data. We identify the complete meiosis toolkit genes in the C. minus genome, as well as the absence of several key genes involved in plasmogamy and karyogamy. Comparative genomics of amoebozoans reveals variation in sexual mechanism exist in the group. Similar to complex eukaryotes, C. minus (some amoebae) possesses Tyrosine kinases and duplicate copies of SPO11. We report a first example of alternative splicing in a key meiosis gene and draw important insights on molecular mechanism of sex in C. minus using genomic and transcriptomic data.


Assuntos
Amoeba , Amebozoários , Amoeba/genética , Amebozoários/genética , Evolução Molecular , Genoma/genética , Genômica , Meiose/genética , Filogenia
12.
Proc Natl Acad Sci U S A ; 119(19): e2113701119, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35500123

RESUMO

Cnidocytes (i.e., stinging cells) are an unequivocally novel cell type used by cnidarians (i.e., corals, jellyfish, and their kin) to immobilize prey. Although they are known to share a common evolutionary origin with neurons, the developmental program that promoted the emergence of cnidocyte fate is not known. Using functional genomics in the sea anemone, Nematostella vectensis, we show that cnidocytes develop by suppression of neural fate in a subset of neurons expressing RFamide. We further show that a single regulatory gene, a C2H2-type zinc finger transcription factor (ZNF845), coordinates both the gain of novel (cnidocyte-specific) traits and the inhibition of ancestral (neural) traits during cnidocyte development and that this gene arose by domain shuffling in the stem cnidarian. Thus, we report a mechanism by which a truly novel regulatory gene (ZNF845) promotes the development of a truly novel cell type (cnidocyte) through duplication of an ancestral cell lineage (neuron) and inhibition of its ancestral identity (RFamide).


Assuntos
Anêmonas-do-Mar , Animais , Diferenciação Celular , Genes Reguladores , Anêmonas-do-Mar/metabolismo
13.
Gigascience ; 112022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35579552

RESUMO

Medusozoa is a widely distributed ancient lineage that harbors one-third of Cnidaria diversity divided into 4 classes. This clade is characterized by the succession of stages and modes of reproduction during metagenic lifecycles, and includes some of the most plastic body plans and life cycles among animals. The characterization of traditional genomic features, such as chromosome numbers and genome sizes, was rather overlooked in Medusozoa and many evolutionary questions still remain unanswered. Modern genomic DNA sequencing in this group started in 2010 with the publication of the Hydra vulgaris genome and has experienced an exponential increase in the past 3 years. Therefore, an update of the state of Medusozoa genomics is warranted. We reviewed different sources of evidence, including cytogenetic records and high-throughput sequencing projects. We focused on 4 main topics that would be relevant for the broad Cnidaria research community: (i) taxonomic coverage of genomic information; (ii) continuity, quality, and completeness of high-throughput sequencing datasets; (iii) overview of the Medusozoa specific research questions approached with genomics; and (iv) the accessibility of data and metadata. We highlight a lack of standardization in genomic projects and their reports, and reinforce a series of recommendations to enhance future collaborative research.


Assuntos
Cnidários , Genômica , Animais , Cnidários/genética , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA
14.
Front Cell Dev Biol ; 9: 777951, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34901022

RESUMO

Detection of chemical stimuli is crucial for living systems and also contributes to quality of life in humans. Since loss of olfaction becomes more prevalent with aging, longer life expectancies have fueled interest in understanding the molecular mechanisms behind the development and maintenance of chemical sensing. Planarian flatworms possess an unsurpassed ability for stem cell-driven regeneration that allows them to restore any damaged or removed part of their bodies. This includes anteriorly-positioned lateral flaps known as auricles, which have long been thought to play a central role in chemotaxis. The contribution of auricles to the detection of positive chemical stimuli was tested in this study using Girardia dorotocephala, a North American planarian species known for its morphologically prominent auricles. Behavioral experiments staged under laboratory conditions revealed that removal of auricles by amputation leads to a significant decrease in the ability of planarians to find food. However, full chemotactic capacity is observed as early as 2 days post-amputation, which is days prior from restoration of auricle morphology, but correlative with accumulation of ciliated cells in the position of auricle regeneration. Planarians subjected to x-ray irradiation prior to auricle amputation were unable to restore auricle morphology, but were still able to restore chemotactic capacity. These results indicate that although regeneration of auricle morphology requires stem cells, some restoration of chemotactic ability can still be achieved in the absence of normal auricle morphology, corroborating with the initial observation that chemotactic success is reestablished 2-days post-amputation in our assays. Transcriptome profiles of excised auricles were obtained to facilitate molecular characterization of these structures, as well as the identification of genes that contribute to chemotaxis and auricle development. A significant overlap was found between genes with preferential expression in auricles of G. dorotocephala and genes with reduced expression upon SoxB1 knockdown in Schmidtea mediterranea, suggesting that SoxB1 has a conserved role in regulating auricle development and function. Models that distinguish between possible contributions to chemotactic behavior obtained from cellular composition, as compared to anatomical morphology of the auricles, are discussed.

15.
Syst Biol ; 70(6): 1200-1212, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33837789

RESUMO

Six-state amino acid recoding strategies are commonly applied to combat the effects of compositional heterogeneity and substitution saturation in phylogenetic analyses. While these methods have been endorsed from a theoretical perspective, their performance has never been extensively tested. Here, we test the effectiveness of six-state recoding approaches by comparing the performance of analyses on recoded and non-recoded data sets that have been simulated under gradients of compositional heterogeneity or saturation. In our simulation analyses, non-recoding approaches consistently outperform six-state recoding approaches. Our results suggest that six-state recoding strategies are not effective in the face of high saturation. Furthermore, while recoding strategies do buffer the effects of compositional heterogeneity, the loss of information that accompanies six-state recoding outweighs its benefits. In addition, we evaluate recoding schemes with 9, 12, 15, and 18 states and show that these consistently outperform six-state recoding. Our analyses of other recoding schemes suggest that under conditions of very high compositional heterogeneity, it may be advantageous to apply recoding using more than six states, but we caution that applying any recoding should include sufficient justification. Our results have important implications for the more than 90 published papers that have incorporated six-state recoding, many of which have significant bearing on relationships across the tree of life. [Compositional heterogeneity; Dayhoff 6-state recoding; S&R 6-state recoding; six-state amino acid recoding; substitution saturation.].


Assuntos
Aminoácidos , Filogenia
16.
Artigo em Inglês | MEDLINE | ID: mdl-38741925

RESUMO

Regeneration is one of the most fascinating and yet least understood biological processes. Echinoderms, one of the closest related invertebrate groups to humans, can contribute to our understanding of the genetic basis of regenerative processes. Among echinoderms, sea cucumbers have the ability to grow back most of their body parts following injury, including the intestine and nervous tissue. The cellular and molecular events underlying these abilities in sea cucumbers have been most extensively studied in the species Holothuria glaberrima. However, research into the regenerative abilities of this species has been impeded due to the lack of adequate genomic resources. Here, we report the first draft genome assembly of H. glaberrima and demonstrate its value for future genetic studies. Using only short sequencing reads, we assembled the genome into 89,105 scaffolds totaling 1.1 gigabases with an N50 of 25 kilobases. Our BUSCO assessment of the genome resulted in 894 (91.4%) complete and partial genes from 978 genes queried. We incorporated transcriptomic data from several different life history stages to annotate 51,415 genes in our final assembly. To demonstrate the usefulness of the genome, we fully annotated the melanotransferrin (Mtf) gene family, which have a potential role in the regeneration of the sea cucumber intestine. Using these same data, we extracted the mitochondrial genome, which showed high conservation to that of other holothuroids. Thus, these data will be a critical resource for ongoing studies of regeneration and other studies in sea cucumbers.

17.
Genome Biol Evol ; 12(10): 1819-1829, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32697837

RESUMO

Extreme environmental gradients represent excellent study systems to better understand the variables that mediate patterns of genomic variation between populations. They also allow for more accurate predictions of how future environmental change might affect marine species. The Persian/Arabian Gulf is extreme in both temperature and salinity, whereas the adjacent Gulf of Oman has conditions more typical of tropical oceans. The sea urchin Echinometra sp. EZ inhabits both of these seas and plays a critical role in coral reef health as a grazer and bioeroder, but, to date, there have been no population genomic studies on this or any urchin species in this unique region. E sp. EZ's life history traits (e.g., large population sizes, large reproductive clutches, and long life spans), in theory, should homogenize populations unless nonneutral processes are occurring. Here, we generated a draft genome and a restriction site-associated DNA sequencing data set from seven populations along an environmental gradient across the Persian/Arabian Gulf and the Gulf of Oman. The estimated genome size of E. sp. EZ was 609 Mb and the heterozygosity was among the highest recorded for an echinoderm at 4.5%. We recovered 918 high-quality SNPs from 85 individuals which we then used in downstream analyses. Population structure analyses revealed a high degree of admixture between all sites, although there was population differentiation and significant pairwise FST values between the two seas. Preliminary results suggest migration is bidirectional between the seas and nine candidate loci were identified as being under putative natural selection, including one collagen gene. This study is the first to investigate the population genomics of a sea urchin from this extreme environmental gradient and is an important contribution to our understanding of the complex spatial patterns that drive genomic divergence.


Assuntos
Migração Animal , Ambientes Extremos , Genoma , Ouriços-do-Mar/genética , Seleção Genética , Animais , Ecossistema , Oceano Índico , Polimorfismo de Nucleotídeo Único , Salinidade , Temperatura
18.
Nat Commun ; 11(1): 3676, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32719321

RESUMO

The genomes of non-bilaterian metazoans are key to understanding the molecular basis of early animal evolution. However, a full comprehension of how animal-specific traits, such as nervous systems, arose is hindered by the scarcity and fragmented nature of genomes from key taxa, such as Porifera. Ephydatia muelleri is a freshwater sponge found across the northern hemisphere. Here, we present its 326 Mb genome, assembled to high contiguity (N50: 9.88 Mb) with 23 chromosomes on 24 scaffolds. Our analyses reveal a metazoan-typical genome architecture, with highly shared synteny across Metazoa, and suggest that adaptation to the extreme temperatures and conditions found in freshwater often involves gene duplication. The pancontinental distribution and ready laboratory culture of E. muelleri make this a highly practical model system which, with RNAseq, DNA methylation and bacterial amplicon data spanning its development and range, allows exploration of genomic changes both within sponges and in early animal evolution.


Assuntos
Mapeamento Cromossômico , Cromossomos/genética , Evolução Molecular , Poríferos/genética , Adaptação Fisiológica/genética , Animais , Epigênese Genética , Água Doce , Regulação da Expressão Gênica no Desenvolvimento , Anotação de Sequência Molecular , Filogenia , Poríferos/crescimento & desenvolvimento , RNA-Seq , Análise de Sequência de DNA , Sintenia
19.
Database (Oxford) ; 20202020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32386298

RESUMO

Following the completion of the genome sequencing and gene prediction of Mnemiopsis leidyi, a lobate ctenophore that is native to the coastal waters of the western Atlantic Ocean, we developed and implemented the Mnemiopsis Genome Project Portal (MGP Portal), a comprehensive Web-based data portal for navigating the genome sequence and gene annotations. In the years following the first release of the MGP Portal, it has become evident that the inclusion of data from significant published studies on Mnemiopsis has been critical to its adoption as the centralized resource for this emerging model organism. With this most recent update, the Portal has significantly expanded to include in situ images, temporal developmental expression profiles and single-cell expression data. Recent enhancements also include implementations of an updated BLAST interface, new graphical visualization tools and updates to gene pages that integrate all new data types. Database URL: https://research.nhgri.nih.gov/mnemiopsis/.


Assuntos
Ctenóforos , Animais , Sequência de Bases , Ctenóforos/genética , Visualização de Dados , Expressão Gênica , Genoma/genética
20.
Genome Biol Evol ; 12(6): 948-964, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32211845

RESUMO

Tunicates, the closest living relatives of vertebrates, have served as a foundational model of early embryonic development for decades. Comparative studies of tunicate phylogeny and genome evolution provide a critical framework for analyzing chordate diversification and the emergence of vertebrates. Toward this goal, we sequenced the genome of Corella inflata (Ascidiacea, Phlebobranchia), so named for the capacity to brood self-fertilized embryos in a modified, "inflated" atrial chamber. Combining the new genome sequence for Co. inflata with publicly available tunicate data, we estimated a tunicate species phylogeny, reconstructed the ancestral Hox gene cluster at important nodes in the tunicate tree, and compared patterns of gene loss between Co. inflata and Ciona robusta, the prevailing tunicate model species. Our maximum-likelihood and Bayesian trees estimated from a concatenated 210-gene matrix were largely concordant and showed that Aplousobranchia was nested within a paraphyletic Phlebobranchia. We demonstrated that this relationship is not an artifact due to compositional heterogeneity, as had been suggested by previous studies. In addition, within Thaliacea, we recovered Doliolida as sister to the clade containing Salpida and Pyrosomatida. The Co. inflata genome provides increased resolution of the ancestral Hox clusters of key tunicate nodes, therefore expanding our understanding of the evolution of this cluster and its potential impact on tunicate morphological diversity. Our analyses of other gene families revealed that several cardiovascular associated genes (e.g., BMP10, SCL2A12, and PDE2a) absent from Ci. robusta, are present in Co. inflata. Taken together, our results help clarify tunicate relationships and the genomic content of key ancestral nodes within this phylogeny, providing critical insights into tunicate evolution.


Assuntos
Genes Homeobox , Genoma , Filogenia , Urocordados/genética , Animais , Família Multigênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA