Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Food Sci ; 89(7): 4064-4078, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38829747

RESUMO

Derived from industrial processing waste, peanut skins contain polyphenols that delay oxidative food spoilage. However, these compounds are susceptible to light, heat, and oxygen exposure. Microencapsulation provides a solution by offering protection from these factors. The aim of this study was to evaluate the protective effect of peanut skin extract microcapsules on the chemical, microbiological, and sensory property and shelf life of sunflower seeds during storage. Five roasted sunflower seed samples were prepared: control (S-C); added with butylhydroxytoluene (S-BHT); coated with carboxymethyl cellulose (S-CMC); coated with CMC and the addition of peanut skin crude extract (S-CMC-CE); coated with CMC and the addition of microcapsules (S-CMC-M20). Sensory acceptability was determined using hedonic testing. Chemical (peroxide value, conjugated dienes, hexanal and nonanal content, and fatty acid profile), microbiological, and descriptive analyses were carried out on samples stored for 45 days at room temperature. Shelf life was calculated using a simple linear regression. All samples were microbiologically fit for human consumption and accepted by consumer panelists, scoring above five points on the nine-point hedonic scale. S-CMC-M20 exhibited the lowest peroxide value (6.59 meqO2/kg) and hexanal content (0.4 µg/g) at the end of the storage. Estimated shelf life showed that S-MC-M20 (76.3 days) extended its duration nearly ninefold compared to S-C (8.3 days) and doubled that of S-CMC-CE (37.5 days). This indicates a superior efficacy of microencapsulated extract compared to its unencapsulated form, presenting a promising natural strategy for improving the shelf life of analogous food items. PRACTICAL APPLICATION: Incorporating peanut skin extract microcapsules in coating sunflower seeds presents a promising strategy to extend the shelf life of lipid-rich foods, capitalizing on the antioxidant properties of polyphenols. This innovative approach not only enhances nutritional quality but also addresses sustainability concerns by repurposing agro-industrial byproducts, such as peanut skins. By meeting consumer demand for functional foods with added health benefits, this technique offers potential opportunities for the development of novel, value-added food products while contributing to circular economy principles and waste management efforts.


Assuntos
Arachis , Armazenamento de Alimentos , Helianthus , Polifenóis , Sementes , Sementes/química , Helianthus/química , Armazenamento de Alimentos/métodos , Arachis/química , Humanos , Composição de Medicamentos/métodos , Comportamento do Consumidor , Paladar , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Conservação de Alimentos/métodos
2.
J Food Sci ; 88(11): 4457-4471, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37799104

RESUMO

This study aimed to characterize and microencapsulate soybean seed coats phenolic compounds by spray-drying, evaluating physicochemical properties and storage stability. Different extraction methodologies were used to obtain crude extract (SCE), ethyl acetate fraction, water fraction, and bound phenolic extract. Extraction yield, total phenolic and flavonoid contents, and antioxidant capacity were determined. HPLC-electrospray ionization source-MS/MS analysis was performed on SCE. Microencapsulation by spray-drying of SCE incorporating 10%, 20%, and 30% maltodextrin (MD) was carried out. Drying yield (DY), encapsulation efficiency (EE), moisture, morphology and particle size, dry, and aqueous storage stability were evaluated on the microcapsules. SCE had 7.79 g/100 g polyphenolic compounds (mainly isoflavones and phenolic acids) with antioxidant activity. Purification process by solvent partitioning allowed an increase of phenolic content and antioxidant activity. Microcapsules with 30% MD exhibited the highest DY, EE, and stability. Microencapsulated polyphenolic compounds from soybean seed coats can be used as functional ingredients in food products. PRACTICAL APPLICATION: Soybean seed coat is a usually discarded agro-industrial by-product, which presents antioxidant compounds of interest to human health. These compounds are prone to oxidation due to their chemical structure; therefore, microencapsulation is a viable and reproducible solution to overcome stability-related limitations. Microencapsulation of soybean seed coats polyphenols is an alternative which protects and extends the stability of phenolic compounds that could be potentially incorporated into food products as a natural additive with antioxidant properties.


Assuntos
Antioxidantes , Glycine max , Humanos , Antioxidantes/química , Glycine max/química , Cápsulas/química , Espectrometria de Massas em Tandem , Extratos Vegetais/química , Fenóis/análise , Sementes/química , Água/análise
3.
Córdoba; s.n; 2011. 135 h p. ilus, ^c29 cm, ^eCD ROM Tesis Digitalizada.
Tese em Espanhol | LILACS | ID: lil-607741

RESUMO

El maní es una de las principales oleaginosas del mundo y Argentina es uno de sus principales productores y exportadores. En la provincia de Córdoba se concentra el 94,63% del cultivo. Las variedades del tipo Runner: cultivar Tegua y Granoleico, presentan perfiles muy diferentes de ácidos grasos. El alto contenido en ácido graso nonoinsaturado en los productos derivados de maní lo hace muy estable ante los procesos de oxidación y altamente beneficioso para la prevención de enfermedades cardiovasculares. El objetivo de este estudio fue valorar la calidad nutricional de los maníes de las variedades Tegua (T) y Granoleico (GO) mediante el análisis de la estabilidad y aceptabilidad de sus aceites y en especial la evaluación de sus efectos sobre los lípidos plasmáticos en ratones Albino swiss. Materiales y métodos: Se utilizaron granos de maní de las variedades citadas, se determinaron macronutrientes, humedad, minerales y tocoferoles. Se obtuvo aceite de maní por método de prensado en frío. Se evaluó la composición de ácidos grasos y se la comparó con las de otros aceites vegetales (girasol, maíz, soja, canola y oliva). Estabilidad. Se analizaron índice de peróxido(IP), índice de p‐anisidina (IA) y dienos conjugados (DC) en aceites puros (T‐GO 100‐0 y T‐GO 0‐ 100) y en mezclas de las variedades: al 25% (T‐GO 75‐25), al 50% (T‐GO 50‐50) y al 75% (T‐GO 25‐ 75) almacenados en estufa a 60 ºC. Lípidos plasmáticos. Se realizó un modelo experimental conratones Albino swiss (n=81), se utilizaron dietas semisintéticas con la adición de aceites refinados de girasol, oliva, maní GO y dieta comercial. Se controló el peso semanalmente. A los 77 y 126 días de tratamiento se los sacrificó y midieron los lípidos plasmáticos: triglicéridos, colesterol total, cHDL y cLDL. Análisis sensorial. Se comparó la aceptabilidad de los aceites de maní, girasol y oliva extravirgen. Estadística. Varianza, test de LSD Fisher (α=0,05) y regresión.


Assuntos
Humanos , Masculino , Feminino , Arachis/enzimologia , Arachis/metabolismo , Arachis/química , Química de Alimentos , Camundongos , Valor Nutritivo , Óleos de Plantas/efeitos adversos , Óleos de Plantas/metabolismo , Metabolismo dos Lipídeos , Lipídeos/análise , Ciências da Nutrição , Plantas Medicinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA