Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Imaging ; 104: 88-96, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37734574

RESUMO

BACKGROUND: Early detection of treatment response is important for the management of patients with malignant brain tumors such as glioblastoma to assure good quality of life in relation to therapeutic efficacy. AIM: To investigate whether parametric response mapping (PRM) with diffusion MRI may provide prognostic information at an early stage of standard therapy for glioblastoma. MATERIALS AND METHODS: This prospective study included 31 patients newly diagnosed with glioblastoma WHO grade IV, planned for primary standard postoperative treatment with radiotherapy 60Gy/30 fractions with concomitant and adjuvant Temozolomide. MRI follow-up including diffusion and perfusion weighting was performed at 3 T at start of postoperative chemoradiotherapy, three weeks into treatment, and then regularly until twelve months postoperatively. Regional mean diffusivity (MD) changes were analyzed voxel-wise using the PRM method (MD-PRM). At eight and twelve months postoperatively, after completion of standard treatment, patients were classified using conventional MRI and clinical evaluation as either having stable disease (SD, including partial response) or progressive disease (PD). It was assessed whether MD-PRM differed between patients having SD versus PD and whether it predicted the risk of disease progression (progression-free survival, PFS) or death (overall survival, OS). A subgroup analysis was performed that compared MD-PRM between SD and PD in patients only undergoing diagnostic biopsy. MGMT-promotor methylation status (O6-methylguanine-DNA methyltransferase) was registered and analyzed with respect to PFS, OS and MD-PRM. RESULTS: Of the 31 patients analyzed: 21 were operated by resection and ten by diagnostic biopsy. At eight months, 19 patients had SD and twelve had PD. At twelve months, ten patients had SD and 20 had PD, out of which ten were deceased within twelve months and one was deceased without known tumor progression. Median PFS was nine months, and median OS was 17 months. Eleven patients had methylated MGMT-promotor, 16 were MGMT unmethylated, and four had unknown MGMT-status. MD-PRM did not significantly predict patients having SD versus PD neither at eight nor at twelve months. Patients with an above median MD-PRM reduction had a slightly longer PFS (P = 0.015) in Kaplan-Maier analysis, as well as a non-significantly longer OS (P = 0.099). In the subgroup of patients only undergoing biopsy, total MD-PRM change at three weeks was generally higher for patients with SD than for patients with PD at eight months, although no tests were performed. MGMT status strongly predicted both PFS and OS but not MD-PRM change. CONCLUSION: MD-PRM at three weeks was not demonstrated to be predictive of treatment response, disease progression, or survival. Preliminary results suggested a higher predictive value in non-resected patients, although this needs to be evaluated in future studies.

2.
J Neuroradiol ; 46(6): 367-372, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30389510

RESUMO

BACKGROUND: Differentiation between glioblastoma and brain metastasis may be challenging in conventional contrast-enhanced MRI. PURPOSE: To investigate if perfusion-weighted MRI is able to differentiate glioblastoma from metastasis and, as a second aim was to see if it was possible in the latter group, to predict the primary site of neoplasm. MATERIAL AND METHODS: Hundred and fourteen patients with newly discovered tumor lesion (76 metastases and 38 glioblastomas) underwent conventional contrast-enhanced MRI including dynamic susceptibility contrast perfusion sequence. The calculated relative cerebral blood volumes were analyzed in the solid tumor area, peritumoral area, area adjacent to peritumoral area, and normal appearing white matter in contralateral semioval center. The Student t-test was used to detect statistically significant differences in relative cerebral blood volume between glioblastomas and metastases in the aforementioned areas. Furthermore, the metastasis group was divided in four sub groups (lung-, breast-, melanoma-, and gastrointestinal origin) and using one-way ANOVA test. P-values < 0.05 were considered significant. RESULTS: Relative cerebral blood volume (rCBV) in the peritumoral edema was significantly higher in glioblastomas than in metastases (mean 3.2 ± 1.4 and mean 0.9 ± 0.7), respectively, (P < 0.0001). No significant differences in the solid tumor area or the area adjacent to edema were found, (P = 0.28 and 0.21 respectively). There were no significant differences among metastases in the four groups. CONCLUSION: It is possible to differentiate glioblastomas from metastases by measuring the CBV in the peritumoral edema. It is not possible to differentiate between brain metastases from different primaries (lung-, breast-, melanoma or gastrointestinal) using CBV-measurements in the solid tumor area, peritumoral edema or area adjacent to edema.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Glioblastoma/diagnóstico por imagem , Angiografia por Ressonância Magnética/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/secundário , Volume Sanguíneo Cerebral , Meios de Contraste , Feminino , Glioblastoma/complicações , Humanos , Aumento da Imagem , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA