Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
J Biotechnol ; 376: 1-10, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689251

RESUMO

Yeastolate is often used as a media supplement in industrial mammalian cell culture or as a major media component for microbial fermentations. Yeastolate variability can significantly affect process performance, but analysis is technically challenging because of its compositional complexity. However, what may be adequate for manufacturing purposes is a fast, inexpensive screening method to identify molecular variance and provide sufficient information for quality control purposes, without characterizing all the molecular components. Here we used Size Exclusion Chromatography (SEC) and chemometrics as a relatively fast screening method for identifying lot-to-lot variance (with Principal Component Analysis, PCA) and investigated if Partial Least Squares, PLS, predictive models which correlated SEC data with process titer could be obtained. SEC provided a relatively fast measure of gross molecular size hydrolysate variability with minimal sample preparation and relatively simple data analysis. The sample set comprised of 18 samples from 12 unique source lots of an ultra-filtered yeastolate (10 kDa molecular weight cut-off) used in a mammalian cell culture process. SEC showed significant lot-to-lot variation, at 214 and 280 nm detection, with the most significant variation, that correlated with process performance, occurring at a retention time of ∼6 min. PCA and PLS regression correlation models provided fast identification of yeastolate variance and its process impact. The primary drawback is the limited column lifetime (<300 injections) caused by the complex nature of yeastolate and the presence of zinc. This limited long term reproducibility because these age-related, non-linear changes in chromatogram peak positions and shapes were very significant.

2.
Biotechnol Bioeng ; 119(12): 3432-3446, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36071600

RESUMO

Antibody-drug conjugates (ADCs) are promising anticancer therapeutics, which offer important advantages compared to more classical therapies. There are a variety of ADC critical quality attributes (CQAs) such as the protein structure, aggregation, and drug-to-antibody ratio (DAR), which all impact on potency, stability, and toxicity. Production processes can destabilize antibodies via a variety of physical and chemical stresses, and or by increased aggregation after conjugation of hydrophobic drugs. Thus, a proper control strategy for handling, production, and storage is necessary to maintain CQA levels, which requires the use of in-process quality measurements to first identify, then understand, and control the variables which adversely affect ADC CQAs during manufacturing. Here, we show how polarized excitation emission matrix (pEEM) spectroscopy, a sensitive, nondestructive, and potentially fast technique, can be used for rapidly assessing aggregation and DAR in a single measurement. pEEM provides several sources of information for protein analysis: Rayleigh scatter for identifying aggregate/particle formation and fluorescence emission to assess chemical and structural changes induced by attachment of a linker and/or a small molecule drug payload. Here, we used a nontoxic ADC mimic (monoclonal antibody with linker molecule) to demonstrate efficacy of the measurement method. Emission changes caused via light absorption by the attached linker, allowed us to predict DAR with good accuracy using fluorescence signal from the final purified products (6% relative error of prediction [REP]) and also from unpurified alkylation intermediates (11% REP). pEEM changes could also be correlated with size (hydrodynamic radius, Rh ) and aggregate content parameters obtained from dynamic light scattering and size exclusion chromatography (SEC). For the starting material and purified product samples, pEEM correlated better with Rh (R2 = 0.99, 6% REP) than SEC determined aggregate content (18% REP). Combining both fluorescence and light scatter signals also enabled in-process size quantification (6% REP). Overall, combining polarized measurements with EEM and Rayleigh scatter provides a single measurement, multi-attribute test method for ADC manufacturing.


Assuntos
Imunoconjugados , Imunoconjugados/química , Anticorpos Monoclonais/química , Cromatografia em Gel , Difusão Dinâmica da Luz , Análise Espectral
3.
Colloids Surf B Biointerfaces ; 211: 112310, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35007857

RESUMO

Studying the interaction between plasma proteins and liposomes is critical, particularly for their use as drug delivery systems. Here, the efficacy of anisotropy resolved multidimensional emission spectroscopy (ARMES) for investigating the interaction of human serum albumin (HSA) with liposomes was explored and compared to conventional spectroscopic techniques. Dynamic Light Scattering (DLS) and absorbance spectroscopy (with Multivariate Curve Resolution (MCR) modeling) indicated that the highest degree of liposome rupturing, and aggregation occurred in water, with less in ammonium bicarbonate buffer (ABC) and phosphate buffered saline (PBS). Fluorescence emission spectra of HSA-liposome mixtures revealed significant hypsochromic shifts for water and ABC, but much less in PBS, where the data suggests a non-penetrating protein layer was formed. Average fluorescence lifetimes decreased upon liposome interaction in water (6.2→5.2 ns) and ABC buffer (6.3→5.6 ns) but increased slightly for PBS (5.6→5.8 ns). ARMES using polarized Total Synchronous Fluorescence Scan measurements with parallel factor (PARAFAC) analysis resolved intrinsic HSA fluorescence into two components for interactions in water and ABC buffer, but only one component for PBS. These components, in water and ABC buffer, corresponded to two different HSA populations, one blue-shifted and penetrating the liposomes (λex/em = ~ 280/320 nm) and a second, similar to free HSA in solution (λex/em = ~ 282/356 nm). PARAFAC scores for water and ABC buffer suggested that a large proportion of HSA interacted in an end on configuration. ARMES provides a new way for investigating protein-liposome interactions that exploits the full intrinsic emission space of the protein and thus avoids the use of extrinsic labels. The use of multivariate data analysis provided a comprehensive and structured framework to extract a variety of useful information (resolving different fluorescent species, quantifying their signal contribution, and extracting light scatter signals) all of which can be used to discriminate between interaction mechanisms.


Assuntos
Lipossomos , Albumina Sérica Humana , Anisotropia , Dimiristoilfosfatidilcolina/química , Humanos , Lipossomos/química , Fosforilcolina , Albumina Sérica Humana/química , Espectrometria de Fluorescência , Análise Espectral , Água
4.
Int J Mol Sci ; 22(5)2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800923

RESUMO

A homo-dimeric enzyme, thymidylate synthase (TS), has been a long-standing molecular target in chemotherapy. To further elucidate properties and interactions with ligands of wild-type mouse thymidylate synthase (mTS) and its two single mutants, H190A and W103G, spectroscopic and theoretical investigations have been employed. In these mutants, histidine at position 190 and tryptophan at position 103 are substituted with alanine and glycine, respectively. Several emission-based spectroscopy methods used in the paper demonstrate an especially important role for Trp 103 in TS ligands binding. In addition, the Advanced Poisson-Boltzmann Solver (APBS) results show considerable differences in the distribution of electrostatic potential around Trp 103, as compared to distributions observed for all remaining Trp residues in the mTS family of structures. Together, spectroscopic and APBS results reveal a possible interplay between Trp 103 and His190, which contributes to a reduction in enzymatic activity in the case of H190A mutation. Comparison of electrostatic potential for mTS complexes, and their mutants, with the substrate, dUMP, and inhibitors, FdUMP and N4-OH-dCMP, suggests its weaker influence on the enzyme-ligand interactions in N4OH-dCMP-mTS compared to dUMP-mTS and FdUMP-mTS complexes. This difference may be crucial for the explanation of the "abortive reaction" inhibitory mechanism of N4OH-dCMP towards TS. In addition, based on structural analyses and the H190A mutant capacity to form a denaturation-resistant complex with N4-OH-dCMP in the mTHF-dependent reaction, His190 is apparently responsible for a strong preference of the enzyme active center for the anti rotamer of the imino inhibitor form.


Assuntos
Nucleotídeos de Desoxiuracil/metabolismo , Modelos Teóricos , Espectrometria de Fluorescência/métodos , Eletricidade Estática , Timidilato Sintase/metabolismo , Substituição de Aminoácidos , Animais , Desoxicitidina Monofosfato/análogos & derivados , Desoxicitidina Monofosfato/metabolismo , Nucleotídeos de Desoxiuracil/química , Fluordesoxiuridilato/metabolismo , Camundongos , Modelos Moleculares , Análise Multivariada , Conformação Proteica , Timidilato Sintase/química
5.
J Fluoresc ; 31(3): 835-845, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33740150

RESUMO

Fluorescence Correlation Spectroscopy (FCS) studies of the interaction of polymers or proteins in solution are strongly affected by the viscosity and refractive index of the medium, and the effects are likely to be more significant with the use of short wavelength excitation (e.g., 405 nm diode lasers). Failing to account for these issues can lead to incorrect measurement of average size, conformational changes, and dynamic behaviour of polymers and proteins. Steady-state, time-resolved, and FCS measurements of Alexa 405 in glycerol:water mixtures were performed to determine its suitability for FCS measurements with 405 nm excitation. The effects of the refractive index and viscosity on the diffusion coefficient and photophysical parameters (lifetime and relative quantum yield) of the fluorophore were determined. Alexa 405 lifetime decreased from 3.55 ns in water to 3.25 ns in a 50:50 glycerol:water mixture, while its diffusion coefficient dropped from 333 ± 16 to 44 ± 1 µm2s- 1. Lifetime data collected from micromolar solutions of Alexa 405 did however also suggest that as solvent polarity decreased, aggregates (excimers) were formed as evidenced by the appearance of a rising edge in the decay plots. The interdependence between lifetime, refractive index, and diffusion coefficient could be accurately fitted by a simple polynomial function indicating that the probe is well behaved and predictable in the glycerol:water model system. Overall, Alexa 405 is a most promising and reliable probe for FCS measurement using violet laser diode excitation sources.

6.
Biotechnol Bioeng ; 118(5): 1805-1817, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33501639

RESUMO

Protein quantification during bioprocess monitoring is essential for biopharmaceutical manufacturing and is complicated by the complex chemical composition of the bioreactor broth. Here we present the early-stage development and optimization of a polarized total synchronous fluorescence spectroscopy (pTSFS) method for protein quantification in a hydrolysate-protein model (mimics clarified bioreactor broth samples) using a standard benchtop laboratory fluorometer. We used UV transmitting polarizers to provide wider range pTSFS spectra for screening of the four different TSFS spectra generated by the measurement: parallel (||), perpendicular (⊥), unpolarized (T) intensity spectra and anisotropy maps. TSFS|| (parallel polarized) measurements were the best for protein quantification compared to standard unpolarized measurements and the Bradford assay. This was because TSFS|| spectra had a better analyte signal to noise ratio (SNR), due to the anisotropy of protein emission. This meant that protein signals were better resolved from the background emission of small molecule fluorophores in the cell culture media. SNR of >5000 was achieved for concentrations of bovine serum albumin/yeastolate 1.2/10 g L-1 with TSFS|| . Optimization using genetic algorithm and interval partial least squares based variable selection enabled reduction of spectral resolution and number of excitation wavelengths required without degrading performance. This enables fast (<3.5 min) online/at-line measurements, and the method had an LOD of 0.18 g L-1 and high accuracy with a predictive error of <9%.


Assuntos
Reatores Biológicos , Quimiometria/métodos , Meios de Cultura , Proteínas Recombinantes/análise , Espectrometria de Fluorescência/métodos , Animais , Células Cultivadas , Meios de Cultura/química , Meios de Cultura/metabolismo , Proteínas Recombinantes/metabolismo
7.
Biochim Biophys Acta Gen Subj ; 1865(2): 129770, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33214128

RESUMO

BACKGROUND: Förster Resonance Energy Transfer (FRET) is widely used to study the structure and dynamics of biomolecular systems and also causes the non-linear fluorescence response observed in multi-fluorophore proteins. Accurate FRET analysis, in terms of measuring changes in donor and acceptor spectra and energy transfer efficiency is therefore critical. METHODS: We demonstrate a novel quantitative FRET analysis using anisotropy resolved multidimensional emission spectroscopy (ARMES) in a Human Serum Albumin (HSA) and 1,8-anilinonaphathalene sulfonate (ANS) model. ARMES combines 4D measurement of polarized excitation emission matrices (pEEM) with multivariate data analysis to spectrally resolve contributing fluorophores. Multivariate analysis (Parallel Factor, PARAFAC and restricted Tucker3) was used to resolve fluorophore contributions and for modelling the quenching of HSA emission and the HSA-ANS interactions. RESULTS: pEEM spectra were modelled using Tucker3 which accommodates non-linearities introduced by FRET and a priori chemical knowledge was used to optimise the solution, thus resolving three components: HSA emission, ANS emission from indirect FRET excitation, and ANS emission from direct excitation. Perpendicular emission measurements were more sensitive to indirectly excited acceptor emission. PARAFAC modelling of HSA, donor emission, separated ANS FRET interacting (Tryptophan) and non-interacting (Tyrosine) components. This enabled a new way of calculating quenching constants using the multi-dimensional emission of individual donor fluorophores. CONCLUSIONS: FRET efficiency could be calculated using the multi-dimensional, resolved emission of the interacting donor fluorophores only which yielded higher ET efficiencies compared to conventional methods. GENERAL SIGNIFICANCE: Shows the potential of multidimensional fluorescence measurements and data analysis for more accurate FRET modelling in proteins.


Assuntos
Naftalenossulfonato de Anilina/química , Corantes Fluorescentes/química , Albumina Sérica Humana/química , Algoritmos , Anisotropia , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , Modelos Moleculares
8.
Anal Chim Acta ; 1138: 18-29, 2020 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-33161979

RESUMO

Being able to measure the size and distribution of oligomers in solution is a critical issue in the manufacture and stability of insulin and other protein formulations. Measuring oligomers reliably can however be complicated, due to their fragile self-assembled structures, which are held together by weak forces. This can cause issues in chromatographic based methods, where dissociation or re-equilibration of oligomer populations can occur e.g. upon dilution in a different eluting buffer, but also for light scattering based methods like dynamic light scattering (DLS) where the size difference involved (often less than a factor 3) does not allow mixtures of oligomers to be resolved. Intrinsic fluorescence offers an attractive alternative as it is non-invasive, sensitive but also because it contains scattered light when implemented via excitation emission matrix (EEM) measurements, that is sensitive to changes in particle size. Here, using insulin at formulation level concentrations, we show for the first time how EEM can both discriminate and quantify the proportion of oligomeric states in solution. This was achieved by using the Rayleigh scatter (RS) band and the fluorescence signal contained in EEM. After validating size changes with DLS, we show in particular how the volume under the RS band correlated linearly with protein/oligomer molecular weight, in agreement with the Debye-Zimm relationship. This was true for the RS data from both EEM and polarized EEM (pEEM) measurements, the latter providing a stronger scatter signal, more sensitive to particle size changes. The fluorescence signal was then used with multivariate curve resolution (MCR) to quantify more precisely the soluble oligomer composition of insulin solutions. In conditions that promoted the formation of mainly one type of oligomer (monomer, dimer, or hexamer), pEEM-MCR helped identify the presence of small amounts of other oligomeric forms, while in conditions that were previously said to favour the insulin tetramer, we show that in the presence of zinc, these insulin samples were instead a heterogenous mixture composed of mostly dimers and hexamers. These MCR results correlated in all cases with the observed discrimination by principal component analysis (PCA), and deviations observed in the RS data. In conclusion, using pEEM scatter and emission components with chemometric data analysis provides a unique analytical method for characterising and monitoring changes in the soluble oligomeric state of proteins.


Assuntos
Insulina , Difusão Dinâmica da Luz , Tamanho da Partícula , Análise de Componente Principal , Espectrometria de Fluorescência
9.
Biotechnol Bioeng ; 117(10): 2969-2984, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32633812

RESUMO

The growing use of therapeutic proteins requires accurate analytical techniques for measuring biophysical and structural changes during manufacturing. This is particularly true for the PEGylation of proteins, because characterization of PEGylation reactions and products can often be difficult due to the relatively small impact on protein structure, the lack of an accessible polyethylene glycol (PEG) chromophore, and the heterogeneous final product mixtures. Intrinsic fluorescence spectroscopy is one potential solution due to its relatively high sensitivity to small changes in protein structure and its suitability for online or atline measurements. In this study, we use the PEGylation of lysozyme as a model system to determine the efficacy of polarized excitation-emission matrix (pEEM) spectroscopy as a rapid tool for characterizing the structural variability of the lysozyme (LZ) starting materials and PEGylated products with varying PEG-to-protein ratios (PPR). Dynamic light scattering showed that as PPR increased from 0 to 2.8, the hydrodynamic radius increased from ∼2.2 to 4.8 nm. pEEM measurements provided several sources of information: Rayleigh scattering to identify size changes and aggregate/particle formation, and fluorescence emission to assess chemical and structural changes. PEGylation induced sufficient physicochemical changes in LZ, which produced changes in the pEEM spectra, largely due to variations in the hydrophobic environments of tryptophan residues close to a PEG attachment site. These significant spectral changes when modeled using conventional multivariate analysis methods were able to easily discriminate the raw product solutions according to the degree of PEGylation and were also able to predict PPR with reasonable accuracy (root mean square error for calibration ∼10%, relative error of prediction < 20%), considering the reference size exclusion chromatography method error of ∼7.2%. The variable selection of the pEEM data suggests that equivalent predictions could be obtained with faster and simpler two-dimensional spectra, making the method a more viable online measurement method.


Assuntos
Hidrodinâmica , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Polarização/métodos , Muramidase/química , Polietilenoglicóis/química , Espectrometria de Fluorescência/métodos , Animais , Galinhas , Modelos Biológicos , Muramidase/análise
10.
Anal Chim Acta ; 1101: 99-110, 2020 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-32029125

RESUMO

Immunoglobulin G (IgG) is often used as a starting material for the production of functionalised antibodies, like Antibody Drug Conjugates (ADCs), PEGlyated-conjugates, or radioimmunoconjugates. The gross structural quality of the protein starting material is, therefore, an important factor in determining final product composition, purity, and quality. In terms of structural quality, one needs to know both the aggregation content and the tertiary structure of the protein. The measurement of structural quality in solution can thus be difficult, but the use of intrinsic fluorescence measurements might offer a solution because of its high sensitivity, ease of use, and when implemented in via multi-dimensional techniques like polarized Excitation Emission Matrix (pEEM) spectroscopy, its high information content. Here we demonstrate how pEEM measurements can be used as a multi-attribute screening method for protein quality using a polyclonal rabbit immunoglobulin (rIgG) model system. By using both Rayleigh scatter and fluorescence emission in combination with simple chemometric data analysis methods like Principal Component analysis (PCA) and unfolded partial least squares (U-PLS) one can simultaneously measure protein concentration, structural variance, and particle/aggregate composition. Furthermore, one can generate quantitative prediction models for non-reversible aggregation content as described by size exclusion chromatography (SEC) and obtain qualitative information about reversible aggregate content, which cannot be obtained from SEC measurements. In conclusion, the pEEM measurement approach is a potentially useful Process Analytical Technology (PAT) method for downstream processing operations in biopharmaceutical manufacturing.


Assuntos
Imunoglobulina G/análise , Animais , Análise dos Mínimos Quadrados , Análise de Componente Principal , Coelhos , Reprodutibilidade dos Testes , Espectrometria de Fluorescência/métodos
11.
Methods Appl Fluoresc ; 6(4): 045007, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30101757

RESUMO

The accurate fluorescence analysis of complex, multi-fluorophore containing proteins requires the use of multi-dimensional measurement techniques. For the measurement of intrinsic fluorescence from tyrosine (Tyr) and tryptophan (Trp) one needs tuneable UV excitation and for steady-state measurements like Excitation Emission Matrix (EEM) simple pulsed Xe lamps are commonly used. Unfortunately, simultaneous multi-dimensional wavelength and time resolved measurement of intrinsic protein fluorescence in the 260 to 400 nm spectral range are challenging and typically required the use of very complex tuneable laser systems or multiple single excitation wavelength sources. Here we have assembled and validated a novel Excitation Emission Fluorescence Lifetime Spectrometer (EEFLS) using a pulsed, frequency doubled, Super-Continuum Laser (SCL) source coupled with a 16 channel multi-anode Time Correlated Single Photon Counting (TCSPC) measurement system. This EEFLS enabled the collection of near complete lifetime and intensity maps over the most important intrinsic protein fluorescence spectral range (λ ex = 260-350/λ em = 300-500 nm). The 4-dimensional (λ ex/λ em/I(t)/τ) Excitation Emission Fluorescence Lifetime Matrix (EEFLM) data produced can be used to better characterize the complex intrinsic emission from proteins. The system was capable of measuring fluorescence emission data with high spectral (1-2 nm) resolution and had an Instrument Response Function (IRF) of ∼650 ps for accurate measurement of nanosecond lifetimes. UV power output was stable after a warm up period, with variations of <2% over 9 hours and reproducible (relative standard deviation RSD < 1.5%). This enabled the collection of accurate EEFLM data at low resolution (∼12 nm in excitation and emission) in 1-2 hours or high resolution (4 nm) in ∼17 hours. EEFLS performance in the UV was compared with a conventional commercial TCSPC system using pulsed LED excitation and validated using solutions of p-terphenyl and tryptophan.

12.
Langmuir ; 34(37): 10913-10923, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30145901

RESUMO

Total internal reflection fluorescence microscopy (TIRFM) is an important method in surface science and for the analysis of surface-bound macromolecules. Here, we developed and explored the use of a novel fluorescein isothiocyanate isomer I (FITC)-adsorbed monolayer for alignment and validation of TIRFM measurements and configurations. Aqueous solutions of FITC exist as several different protolytic forms (dianionic, anionic, neutral, and cationic) with each form having different emission characteristics. However, the emission behavior of FITC adsorbed on hydrophilic, hydrophobic, and unmodified glass surfaces at different pH was unknown. TIRFM imaging and spectroscopy were used to study FITC and FITC-labeled bovine serum albumin (BSA-FITC) monolayers generated on three different glass surfaces. Monolayer emission intensity, spectra, and the photobleaching profiles were all dependent on pH and the surface properties of the glass. Very strangely, however, at pH 5.0 on hydrophobic surfaces, the FITC monolayers produced were both bright and apparently unbleachable over ∼20 min of imaging (60 s total exposure). During monolayer formation at pH 5.0, we saw clear evidence for concentration-based quenching, indicating high surface coverage. When the monolayer had been rinsed with buffer to remove unbound FITC, we observed an increase in emission intensity during illumination indicative of some form of photoactivated species being present. Eventually, the fluorescence emission stabilized and remained constant for extended periods of time with no evidence of photobleaching. We hypothesize that during the adsorption process (a hydrophobic-hydrophobic interaction) there was conversion to the fluorescent quinoid form of FITC. In contrast, at pH 7.4 and 9.6 on hydrophobic surfaces, FITC monolayers had well-defined, fast photobleaching kinetics (decay to ∼50% intensity in 5-10 s). The equivalent BSA-FITC monolayers were slightly brighter, with similar photobleaching kinetics. While the precise mechanism for this unusual behavior is still unknown, all these low-cost monolayers were easily prepared, were reproducible, and can serve as convenient test samples for TIRFM alignment, calibration, and validation prior to undertaking measurements with more sensitive biogenic or biological specimens.


Assuntos
Fluoresceína-5-Isotiocianato/química , Adsorção , Animais , Bovinos , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/efeitos da radiação , Fluorescência , Vidro/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Luz , Microscopia de Fluorescência/métodos , Fotodegradação , Soroalbumina Bovina/química , Propriedades de Superfície
13.
Anal Chim Acta ; 1000: 132-143, 2018 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-29289302

RESUMO

Anisotropy resolved multidimensional emission spectroscopy (ARMES) provides valuable insights into multi-fluorophore systems like proteins that have complex overlapping emission bands. The method combines multidimensional fluorescence, anisotropy, and chemometrics to facilitate the differentiation of fluorophores with very similar emission properties. Here, we address the critical issue of standardizing the chemometric methods required to accurately extract spectral and anisotropy information from fluorophore mixtures using two standard sample sets: perylene in glycerol, and a mixture of Erythrosin B and Phloxine B with overlapping emission but different anisotropies. We show for the first time how to accurately model component anisotropy using Multivariate Curve Resolution (MCR) from data collected using total synchronous fluorescence scan (TSFS) and Excitation Emission Matrix (EEM) measurement methods. These datasets were selected to avoid the presence of inner filter effects (IFE) or Förster resonance energy transfer (FRET) that would depolarize fluorescence emission or reduce data tri-linearity. This allowed the non-trilinear TSFS data to yield accurate component anisotropy data once modelled using the correct data augmentation strategy, however, the EEM data proved to be more accurate once optimal constraints (non-negativity and correspondence among species) were employed. For perylene (S2) and Phloxine B which both have very weak anisotropy (<0.06), while the spectral recovery was excellent, the modelled anisotropy values were reasonably accurate (±20% of the real value) because of large relative noise contributions. However, for perylene (S1) and Erythrosin B which have large (>0.2) anisotropies, bilinear and trilinear EEM models built using a total tri-linearity constraint, yielded solutions without any rotational ambiguities and very accurate (±4% of real value) anisotropy values. These sample systems thus provide simple and robust test systems for validating the spectral measurement and chemometric data analysis elements of ARMES.


Assuntos
Azul de Eosina I/análise , Eritrosina/análise , Corantes Fluorescentes/química , Perileno/análise , Anisotropia , Análise Multivariada , Espectrometria de Fluorescência
14.
Methods Appl Fluoresc ; 5(3): 037001, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28584197

RESUMO

Anisotropy resolved multidimensional emission spectroscopy (ARMES) provides valuable insights into multi-fluorophore proteins (Groza et al 2015 Anal. Chim. Acta 886 133-42). Fluorescence anisotropy adds to the multidimensional fluorescence dataset information about the physical size of the fluorophores and/or the rigidity of the surrounding micro-environment. The first ARMES studies used standard thin film polarizers (TFP) that had negligible transmission between 250 and 290 nm, preventing accurate measurement of intrinsic protein fluorescence from tyrosine and tryptophan. Replacing TFP with pairs of broadband wire grid polarizers enabled standard fluorescence spectrometers to accurately measure anisotropies between 250 and 300 nm, which was validated with solutions of perylene in the UV and Erythrosin B and Phloxine B in the visible. In all cases, anisotropies were accurate to better than ±1% when compared to literature measurements made with Glan Thompson or TFP polarizers. Better dual wire grid polarizer UV transmittance and the use of excitation-emission matrix measurements for ARMES required complete Rayleigh scatter elimination. This was achieved by chemometric modelling rather than classical interpolation, which enabled the acquisition of pure anisotropy patterns over wider spectral ranges. In combination, these three improvements permit the accurate implementation of ARMES for studying intrinsic protein fluorescence.

15.
Appl Spectrosc ; 71(6): 1085-1116, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28534676

RESUMO

The production of active pharmaceutical ingredients (APIs) is currently undergoing its biggest transformation in a century. The changes are based on the rapid and dramatic introduction of protein- and macromolecule-based drugs (collectively known as biopharmaceuticals) and can be traced back to the huge investment in biomedical science (in particular in genomics and proteomics) that has been ongoing since the 1970s. Biopharmaceuticals (or biologics) are manufactured using biological-expression systems (such as mammalian, bacterial, insect cells, etc.) and have spawned a large (>€35 billion sales annually in Europe) and growing biopharmaceutical industry (BioPharma). The structural and chemical complexity of biologics, combined with the intricacy of cell-based manufacturing, imposes a huge analytical burden to correctly characterize and quantify both processes (upstream) and products (downstream). In small molecule manufacturing, advances in analytical and computational methods have been extensively exploited to generate process analytical technologies (PAT) that are now used for routine process control, leading to more efficient processes and safer medicines. In the analytical domain, biologic manufacturing is considerably behind and there is both a huge scope and need to produce relevant PAT tools with which to better control processes, and better characterize product macromolecules. Raman spectroscopy, a vibrational spectroscopy with a number of useful properties (nondestructive, non-contact, robustness) has significant potential advantages in BioPharma. Key among them are intrinsically high molecular specificity, the ability to measure in water, the requirement for minimal (or no) sample pre-treatment, the flexibility of sampling configurations, and suitability for automation. Here, we review and discuss a representative selection of the more important Raman applications in BioPharma (with particular emphasis on mammalian cell culture). The review shows that the properties of Raman have been successfully exploited to deliver unique and useful analytical solutions, particularly for online process monitoring. However, it also shows that its inherent susceptibility to fluorescence interference and the weakness of the Raman effect mean that it can never be a panacea. In particular, Raman-based methods are intrinsically limited by the chemical complexity and wide analyte-concentration-profiles of cell culture media/bioprocessing broths which limit their use for quantitative analysis. Nevertheless, with appropriate foreknowledge of these limitations and good experimental design, robust analytical methods can be produced. In addition, new technological developments such as time-resolved detectors, advanced lasers, and plasmonics offer potential of new Raman-based methods to resolve existing limitations and/or provide new analytical insights.


Assuntos
Biofarmácia , Proteínas Recombinantes , Análise Espectral Raman , Animais , Reatores Biológicos , Células CHO , Técnicas de Cultura de Células , Cricetinae , Cricetulus , Meios de Cultura/análise , Meios de Cultura/química , Humanos , Proteínas Recombinantes/análise , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/normas
16.
Anal Chim Acta ; 913: 111-20, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-26944995

RESUMO

A new, fully automated, rapid method, referred to as kernel principal component analysis residual diagnosis (KPCARD), is proposed for removing cosmic ray artifacts (CRAs) in Raman spectra, and in particular for large Raman imaging datasets. KPCARD identifies CRAs via a statistical analysis of the residuals obtained at each wavenumber in the spectra. The method utilizes the stochastic nature of CRAs; therefore, the most significant components in principal component analysis (PCA) of large numbers of Raman spectra should not contain any CRAs. The process worked by first implementing kernel PCA (kPCA) on all the Raman mapping data and second accurately estimating the inter- and intra-spectrum noise to generate two threshold values. CRA identification was then achieved by using the threshold values to evaluate the residuals for each spectrum and assess if a CRA was present. CRA correction was achieved by spectral replacement where, the nearest neighbor (NN) spectrum, most spectroscopically similar to the CRA contaminated spectrum and principal components (PCs) obtained by kPCA were both used to generate a robust, best curve fit to the CRA contaminated spectrum. This best fit spectrum then replaced the CRA contaminated spectrum in the dataset. KPCARD efficacy was demonstrated by using simulated data and real Raman spectra collected from solid-state materials. The results showed that KPCARD was fast (<1 min per 8400 spectra), accurate, precise, and suitable for the automated correction of very large (>1 million) Raman datasets.

17.
Anal Chim Acta ; 886: 133-42, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26320645

RESUMO

Structural analysis of proteins using the emission of intrinsic fluorophores is complicated by spectral overlap. Anisotropy resolved multidimensional emission spectroscopy (ARMES) overcame the overlap problem by the use of anisotropy, with chemometric analysis, to better resolve emission from different fluorophores. Total synchronous fluorescence scan (TSFS) provided information about all the fluorophores that contributed to emission while anisotropy provided information about the environment of each fluorophore. Here the utility of ARMES was demonstrated via study of the chemical and thermal denaturation of human serum albumin (HSA). Multivariate curve resolution (MCR) analysis of the constituent polarized emission ARMES data resolved contributions from four emitters: fluorescence from tryptophan (Trp), solvent exposed tyrosine (Tyr), Tyr in a hydrophobic environment, and room temperature phosphorescence (RTP) from Trp. The MCR scores, anisotropy, and literature validated these assignments and showed all the expected transitions during HSA unfolding. This new methodology for comprehensive intrinsic fluorescence analysis of proteins is applicable to any protein containing multiple fluorophores.


Assuntos
Desdobramento de Proteína , Albumina Sérica/química , Anisotropia , Fluorescência , Humanos , Modelos Moleculares , Desnaturação Proteica , Espectrometria de Fluorescência , Triptofano/química
18.
Anal Chem ; 87(6): 3419-28, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25708170

RESUMO

A robust and accurate analytical methodology for low-content (<0.1%) quantification in the solid-state using Raman spectroscopy, subsampling, and chemometrics was demonstrated using a piracetam-proline model. The method involved a 5-step process: collection of a relatively large number of spectra (8410) from each sample by Raman mapping, meticulous data pretreatment to remove spectral artifacts, use of a 0-100% concentration range partial least-squares (PLS) regression model to estimate concentration at each pixel, use of a more accurate, reduced concentration range PLS model to calculate analyte concentration at each pixel, and finally statistical analysis of all 8000+ concentration predictions to produce an accurate overall sample concentration. The relative prediction accuracy was ∼2.4% for a 0.05-1.0% concentration range, and the limit of detection was comparable to high performance liquid chromatography (0.03% versus 0.041%). For data pretreatment, we developed a unique cosmic ray removal method and used an automated baseline correction method, neither of which required subjective user intervention and thus were fully automatable. The method is applicable to systems which cannot be easily analyzed chromatographically, such as hydrate, polymorph, or solvate contamination.


Assuntos
Informática/métodos , Limite de Detecção , Análise Espectral Raman/métodos , Artefatos , Radiação Cósmica , Análise dos Mínimos Quadrados , Piracetam/análise , Piracetam/química , Prolina/análise , Prolina/química
19.
Anal Chim Acta ; 840: 58-67, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-25086894

RESUMO

The quality of the cell culture media used in biopharmaceutical manufacturing is a crucial factor affecting bioprocess performance and the quality of the final product. Due to their complex composition these media are inherently unstable, and significant compositional variations can occur particularly when in the prepared liquid state. For example photo-degradation of cell culture media can have adverse effects on cell viability and thus process performance. There is therefore, from quality control, quality assurance and process management view points, an urgent demand for the development of rapid and inexpensive tools for the stability monitoring of these complex mixtures. Spectroscopic methods, based on fluorescence or Raman measurements, have now become viable alternatives to more time-consuming and expensive (on a unit analysis cost) chromatographic and/or mass spectrometry based methods for routine analysis of media. Here we demonstrate the application of surface enhanced Raman scattering (SERS) spectroscopy for the simple, fast, analysis of cell culture media degradation. Once stringent reproducibility controls are implemented, chemometric data analysis methods can then be used to rapidly monitor the compositional changes in chemically defined media. SERS shows clearly that even when media are stored at low temperature (2-8°C) and in the dark, significant chemical changes occur, particularly with regard to cysteine/cystine concentration.


Assuntos
Meios de Cultura/análise , Meios de Cultura/metabolismo , Análise Espectral Raman/métodos , Técnicas de Cultura de Células/métodos , Espectroscopia Fotoeletrônica/métodos
20.
Anal Chim Acta ; 821: 54-61, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24703214

RESUMO

The rapid, quantitative analysis of the complex cell culture media used in biopharmaceutical manufacturing is of critical importance. Requirements for cell culture media composition profiling, or changes in specific analyte concentrations (e.g. amino acids in the media or product protein in the bioprocess broth) often necessitate the use of complicated analytical methods and extensive sample handling. Rapid spectroscopic methods like multi-dimensional fluorescence (MDF) spectroscopy have been successfully applied for the routine determination of compositional changes in cell culture media and bioprocess broths. Quantifying macromolecules in cell culture media is a specific challenge as there is a need to implement measurements rapidly on the prepared media. However, the use of standard fluorescence spectroscopy is complicated by the emission overlap from many media components. Here, we demonstrate how combining anisotropy measurements with standard total synchronous fluorescence spectroscopy (TSFS) provides a rapid, accurate quantitation method for cell culture media. Anisotropy provides emission resolution between large and small fluorophores while TSFS provides a robust measurement space. Model cell culture media was prepared using yeastolate (2.5 mg mL(-1)) spiked with bovine serum albumin (0 to 5 mg mL(-1)). Using this method, protein emission is clearly discriminated from background yeastolate emission, allowing for accurate bovine serum albumin (BSA) quantification over a 0.1 to 4.0 mg mL(-1) range with a limit of detection (LOD) of 13.8 µg mL(-1).


Assuntos
Meios de Cultura/química , Polarização de Fluorescência/métodos , Soroalbumina Bovina/análise , Animais , Bovinos , Polarização de Fluorescência/economia , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA