Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
J Adv Res ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37977260

RESUMO

INTRODUCTION: Hypoxia-inducible factor 1 (HIF-1) is a transcriptional activator mediating adaptive responses to hypoxia. It is up-regulated in the tumor microenvironment and recognized as an effective anticancer drug target. Previously, we discovered that the natural compound moracin-O and its synthetic derivative MO-460 inhibited HIF-1α via hnRNPA2B1. OBJECTIVES: This study aimed to develop novel HIF-1 inhibitors for cancer chemotherapy by harnessing the potential of the natural products moracins-O and P. METHODS: In an ongoing search for novel HIF-1 inhibitors, a series of nature-inspired benzofurans with modifications on the chiral rings of moracins-O and P were synthesized. They showed improved chemical tractability and were evaluated for their inhibitory activity on HIF-1α accumulation under hypoxic conditions in HeLa CCL2 cells. The most potent derivative's chemical-based toxicities, binding affinities, and in vivo anti-tumorigenic effects were evaluated. Further, we examined whether our compound, MO-2097, exhibited anticancer effects in three-dimensional cultured organoids. RESULTS: Herein, we identified a novel synthetic chiral-free compound, MO-2097, with reduced structural complexity and increased efficiency. MO-2097 exhibited inhibitory effects on hypoxia-induced HIF-1α accumulation in HeLa CCL2 cells via inhibition of hnRNPA2B1 protein, whose binding affinities were confirmed by isothermal titration calorimetry analysis. In addition, MO-2097 demonstrated in vivo efficacy and biocompatibility in a BALB/c mice xenograft model. The immunohistochemistry staining of MO-2097-treated tissues showed decreased expression of HIF-1α and increased levels of apoptosis marker cleaved caspase 3, confirming in vivo efficacy. Furthermore, we confirmed that MO-2097 works effectively in cancer patient-based organoid models. CONCLUSION: MO-2097 represents a promising new generation of chemotherapeutic agents targeting HIF-1α inhibition via hnRNPA2B1, requiring further investigation.

2.
ACS Appl Bio Mater ; 5(5): 2232-2239, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35446530

RESUMO

Acetylcholinesterase (AChE) is a pivotal enzyme that is closely related with multiple neurological diseases, such as brain disorders or alterations in the neurotransmission and cancer. The development of convenient methods for imaging AChE activity in biological samples is very important to understand its mechanisms and functions in a living system. Herein, a fluorescent probe exhibiting emission in the near-infrared (NIR) region is developed to detect AChE and visualize biological AChE activities. This probe exhibits a quick response time, reasonable detection limit, and a large Stokes shift accompanied by the NIR emission. The probe has much better reactivity toward AChE than butyrylcholinesterase, which is one of the significant interfering substances. The outstanding specificity of the probe is proved by cellular imaging AChE activity and successful mapping in different regions of zebrafish. Such an effective probe can greatly contribute to ongoing efforts to design emission probes that have distinct properties to assay AChE in biological systems.


Assuntos
Acetilcolinesterase , Peixe-Zebra , Animais , Butirilcolinesterase , Corantes Fluorescentes , Imagem Óptica
3.
ACS Chem Biol ; 16(2): 360-370, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33517652

RESUMO

Autophagy plays an important role in maintaining tumor cell progression and survival in response to metabolic stress. Thus, the regulation of autophagy can be used as a strategy for anticancer therapy. Here, we report dutomycin (DTM) as a novel autophagy enhancer that eventually induces apoptosis due to excessive autophagy. Also, human serine protease inhibitor B6 (SERPINB6) was identified as a target protein of DTM, and its novel function which is involved in autophagy was studied for the first time. We show that DTM directly binds SERPINB6 and then activates intracellular serine proteases, resulting in autophagy induction. Inhibitory effects of DTM on the function of SERPINB6 were confirmed through enzyme- and cell-based approaches, and SERPINB6 was validated as a target protein using siRNA-mediated knockdown and an overexpression test. In a zebrafish xenograft model, DTM showed a significant decrease in tumor area. Furthermore, the present findings will be expected to contribute to the expansion of novel basic knowledge about the correlation of cancer and autophagy by promoting active further research on SERPINB6, which was not previously considered the subject of cancer biology.


Assuntos
Antraciclinas/uso terapêutico , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Serpinas/metabolismo , Animais , Antraciclinas/metabolismo , Antraciclinas/farmacologia , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Células HeLa , Humanos , Serina Proteases/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
4.
Int J Mol Sci ; 21(13)2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32645923

RESUMO

In the past, several microtubule targeting agents (MTAs) have been developed into successful anticancer drugs. However, the usage of these drugs has been limited by the acquisition of drug resistance in many cancers. Therefore, there is a constant demand for the development of new therapeutic drugs. Here we report the discovery of 5-5 (3-cchlorophenyl)-N-(3-pyridinyl)-2-furamide (CPPF), a novel microtubule targeting anticancer agent. Using both 2D and 3D culture systems, we showed that CPPF was able to suppress the proliferation of diverse cancer cell lines. In addition, CPPF was able to inhibit the growth of multidrug-resistant cell lines that are resistant to other MTAs, such as paclitaxel and colchicine. Our results showed that CPPF inhibited growth by depolymerizing microtubules leading to mitotic arrest and apoptosis. We also confirmed CPPF anticancer effects in vivo using both a mouse xenograft and a two-step skin cancer mouse model. Using established zebrafish models, we showed that CPPF has low toxicity in vivo. Overall, our study proves that CPPF has the potential to become a successful anticancer chemotherapeutic drug.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Microtúbulos/metabolismo , Neoplasias/tratamento farmacológico , Células A549 , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Colchicina/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Células HeLa , Células Hep G2 , Humanos , Células Jurkat , Células K562 , Células MCF-7 , Masculino , Camundongos , Mitose/efeitos dos fármacos , Neoplasias/metabolismo , Células PC-3 , Paclitaxel/farmacologia , Células U937 , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Peixe-Zebra
5.
Biochem Pharmacol ; 175: 113861, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32081789

RESUMO

Autophagy plays a major role in cell survival and has therefore been exploited as an important strategy in cancer therapy. In this study, we evaluated the autophagy-regulatory effects of kushenol E (KE), a bi-prenylated flavonoid isolated from Sophora flavescens and found that KE increased LC3B-II levels while inducing the formation of autophagic vacuoles and immature autophagosomes in HeLa and HCT116 cells. Transmission electron microscopy images revealed that KE treatment generates immature autophagosomes. Furthermore, KE inhibited autophagosome maturation as demonstrated by blocking the degradation of EGFP puncta in HeLa cells stably expressing EGFP-mRFP-LC3B. It also reduced lysosomal activity and cathepsin maturation by disrupting lysosomal positioning, subsequently inducing apoptosis. Further, a combinatorial approach employing cellular thermal shift assays, revealed valosin-containing protein (VCP)/p97 as a potential target protein of KE; the knockdown and overexpression of VCP/p97 confirmed its involvement in regulating lysosomal positioning for autophagy maturation via direct interactions with KE. Thus, KE may possess autophagy-regulating properties mediated by binding to VCP/p97.


Assuntos
Autofagia/efeitos dos fármacos , Flavonoides/farmacologia , Lisossomos/efeitos dos fármacos , Proteína com Valosina/metabolismo , Apoptose/efeitos dos fármacos , Autofagossomos/efeitos dos fármacos , Autofagossomos/ultraestrutura , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Células HCT116 , Células HeLa , Humanos , Lisossomos/metabolismo , Lisossomos/ultraestrutura , RNA Interferente Pequeno/genética , Regulação para Cima , Proteína com Valosina/genética
6.
Bone ; 131: 115153, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31730830

RESUMO

Bone homeostasis is regulated by a balance of bone formation and bone resorption; dysregulation of bone homeostasis may cause bone-related diseases (e.g., osteoporosis, osteopetrosis, bone fracture). Members of the nuclear factor of activated T cells (NFAT) family of transcription factors play crucial roles in the regulation of immune system, inflammatory responses, cardiac formation, skeletal muscle development, and bone homeostasis. Of these, NFATc1 is a key transcription factor mediating osteoclast differentiation, which is regulated by phosphorylation by distinct NFAT kinases including casein kinase 1 (CK1), glycogen synthase kinase 3 (GSK3), and dual-specificity tyrosine-phosphorylation-regulated kinases (DYRKs). In this study, we report that cell division control protein 2 homolog (cdc2) is a novel NFAT protein kinase that inhibits NFATc1 activation by direct phosphorylation of the NFATc1 S263 residue. Cdc2 inhibitors such as Roscovitine and BMI-1026 induce reduction of phosphorylation of NFATc1, and this process leads to the inhibition of NFATc1 translocation from the nucleus to the cytoplasm, consequently increasing the nuclear pool of NFATc1. Additionally, the inhibition of cdc2-mediated NFATc1 phosphorylation causes an elevation of osteoclast differentiation or TRAP-positive staining in zebrafish scales. Our results suggest that cdc2 is a novel NFAT protein kinase that negatively regulates osteoclast differentiation.


Assuntos
Reabsorção Óssea , Osteoclastos , Animais , Diferenciação Celular , Quinase 3 da Glicogênio Sintase , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/metabolismo , Fosforilação , Ligante RANK , Peixe-Zebra/metabolismo
7.
J Enzyme Inhib Med Chem ; 34(1): 1481-1488, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31423846

RESUMO

Indoleamine 2,3-dioxygenase 1 (IDO1), a tryptophan catabolising enzyme, is known as a tumour cell survival factor that causes immune escape in several types of cancer. Flavonoids of Sophora flavescens have a variety of biological benefits for humans; however, cancer immunotherapy effect has not been fully investigated. The flavonoids (1-6) isolated from S. flavescens showed IDO1 inhibitory activities (IC50 4.3-31.4 µM). The representative flavonoids (4-6) of S. flavescens were determined to be non-competitive inhibitors of IDO1 by kinetic analyses. Their binding affinity to IDO1 was confirmed using thermal stability and surface plasmon resonance (SPR) assays. The molecular docking analysis and mutagenesis assay revealed the structural details of the interactions between the flavonoids (1-6) and IDO1. These results suggest that the flavonoids (1-6) of S. flavescens, especially kushenol E (6), as IDO1 inhibitors might be useful in the development of immunotherapeutic agents against cancers.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Sophora/química , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Flavonoides/química , Flavonoides/isolamento & purificação , Células HeLa , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Modelos Moleculares , Estrutura Molecular , Mutagênese Sítio-Dirigida , Relação Estrutura-Atividade , Células Tumorais Cultivadas
8.
Cell Death Dis ; 10(8): 570, 2019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358734

RESUMO

The initiation of centrosome duplication is regulated by the Plk4/STIL/hsSAS-6 axis; however, the involvement of other centrosomal proteins in this process remains unclear. In this study, we demonstrate that Cep131 physically interacts with Plk4 following phosphorylation of residues S21 and T205. Localizing at the centriole, phosphorylated Cep131 has an increased capability to interact with STIL, leading to further activation and stabilization of Plk4 for initiating centrosome duplication. Moreover, we found that Cep131 overexpression resulted in centrosome amplification by excessive recruitment of STIL to the centriole and subsequent stabilization of Plk4, contributing to centrosome amplification. The xenograft mouse model also showed that both centrosome amplification and colon cancer growth were significantly increased by Cep131 overexpression. These findings demonstrate that Cep131 is a novel substrate of Plk4, and that phosphorylation or dysregulated Cep131 overexpression promotes Plk4 stabilization and therefore centrosome amplification, establishing a perspective in understanding a relationship between centrosome amplification and cancer development.


Assuntos
Proteínas de Ciclo Celular/genética , Centrossomo/metabolismo , Neoplasias do Colo/genética , Proteínas do Citoesqueleto/genética , Proteínas Serina-Treonina Quinases/genética , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/genética , Células HCT116 , Células HEK293 , Xenoenxertos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Fosforilação/genética
9.
BMB Rep ; 52(5): 342-347, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31068247

RESUMO

Methylation is a primary epigenetic mechanism regulating gene expression. 5-aza-2'-deoxycytidine is an FDA-approved drug prescribed for treatment of cancer by inhibiting DNA-Methyl-Transferase 1 (DNMT1). Results of this study suggest that prolonged treatment with 5-aza-2'-deoxycytidine could induce centrosome abnormalities in cancer cells and that CEP131, a centrosome protein, is regulated by DNMT1. Interestingly, cancer cell growth was attenuated in vitro and in vivo by inhibiting the expression of Cep131. Finally, Cep131-deficient cells were more sensitive to treatment with DNMT1 inhibitors. These findings suggest that Cep131 is a potential novel anti-cancer target. Agents that can inhibit this protein may be useful alone or in combination with DNMT1 inhibitors to treat cancer. [BMB Reports 2019; 52(5): 342-347].


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferase 1/antagonistas & inibidores , Decitabina/farmacologia , Proteínas dos Microtúbulos/antagonistas & inibidores , Neoplasias do Colo do Útero/tratamento farmacológico , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proteínas do Citoesqueleto , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA/efeitos dos fármacos , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Epigênese Genética , Feminino , Células HEK293 , Células HeLa , Humanos , Proteínas dos Microtúbulos/genética , Proteínas dos Microtúbulos/metabolismo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo
10.
Exp Mol Med ; 51(2): 1-14, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755586

RESUMO

Hypoxia-inducible factor-1α (HIF-1α) mediates tumor cell adaptation to hypoxic conditions and is a potentially important anticancer therapeutic target. We previously developed a method for synthesizing a benzofuran-based natural product, (R)-(-)-moracin-O, and obtained a novel potent analog, MO-460 that suppresses the accumulation of HIF-1α in Hep3B cells. However, the molecular target and underlying mechanism of action of MO-460 remained unclear. In the current study, we identified heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) as a molecular target of MO-460. MO-460 inhibits the initiation of HIF-1α translation by binding to the C-terminal glycine-rich domain of hnRNPA2B1 and inhibiting its subsequent binding to the 3'-untranslated region of HIF-1α mRNA. Moreover, MO-460 suppresses HIF-1α protein synthesis under hypoxic conditions and induces the accumulation of stress granules. The data provided here suggest that hnRNPA2B1 serves as a crucial molecular target in hypoxia-induced tumor survival and thus offer an avenue for the development of novel anticancer therapies.


Assuntos
Benzofuranos/farmacologia , Produtos Biológicos/farmacologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Regiões 3' não Traduzidas , Benzofuranos/química , Produtos Biológicos/química , Linhagem Celular Tumoral , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Estrutura Molecular , Ligação Proteica , Biossíntese de Proteínas/efeitos dos fármacos , Domínios e Motivos de Interação entre Proteínas , Estresse Fisiológico/efeitos dos fármacos , Transcrição Gênica
11.
J Nat Prod ; 81(11): 2462-2469, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30339391

RESUMO

Three cyclic lipopeptides, including one known (1) and two new (2 and 3) compounds, that possess the rare enamide linkage group were discovered from Streptomyces sp. KCB14A132, an actinobacterium isolated from a soil sample collected from Jeung Island, Korea. The NMR and MS-based characterization showed that they differed in the amino acid residues in the peptide backbone. Application of Marfey's analysis, GITC derivatization, and modified Mosher's method, as well as ECD measurements provided the absolute configurations of enamidonin (1) and those of new compounds enamidonins B and C (2 and 3). The two new enamidonin analogues were shown to exhibit antibacterial activity against Gram-positive bacteria including methicillin-resistant and quinolone-resistant Staphylococcus aureus. Furthermore, evaluation of the extraction conditions and a close inspection of the LC-MS chromatograms revealed that the N, N-acetonide unit of the enamidonin family was formed during the acetone extraction process. The chemically prepared deacetonide derivatives of enamidonins were found to lack antibacterial activity, demonstrating that the dimethylimidazolidinone residue is necessary for antibacterial activity.


Assuntos
Antibacterianos/química , Lipopeptídeos/química , Peptídeos Cíclicos/química , Streptomyces/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Bactérias Gram-Positivas/efeitos dos fármacos , Lipopeptídeos/isolamento & purificação , Lipopeptídeos/farmacologia , Testes de Sensibilidade Microbiana , Peptídeos Cíclicos/isolamento & purificação , Peptídeos Cíclicos/farmacologia , Staphylococcus aureus/efeitos dos fármacos
12.
Exp Dermatol ; 27(11): 1304-1308, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30092122

RESUMO

Atopic dermatitis (AD) is a chronic inflammatory skin disease whose prevalence is increasing worldwide. Filaggrin (FLG) is essential for the development of the skin barrier, and its genetic mutations are major predisposing factors for AD. In this study, we developed a convenient and practical method to detect FLG mutations in AD patients using peptide nucleic acid (PNA) probes labelled with fluorescent markers for rapid analysis. Fluorescence melting curve analysis (FMCA) precisely identified FLG mutations based on the distinct difference in the melting temperatures of the wild-type and mutant allele. Moreover, PNA probe-based FMCA easily and accurately verified patient samples with both heterozygote and homozygote FLG mutations, providing a high-throughput method to reliable screen AD patients. Our method provides a convenient, rapid and accurate diagnostic tool to identify potential AD patients allowing for early preventive treatment, leading to lower incidence rates of AD, and reducing total healthcare expenses.


Assuntos
Análise Mutacional de DNA/métodos , Sondas de DNA , Dermatite Atópica/diagnóstico , Dermatite Atópica/genética , Proteínas de Filamentos Intermediários/genética , Alelos , Estudos de Casos e Controles , Proteínas Filagrinas , Fluorescência , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Homozigoto , Humanos , Mutação , Ácidos Nucleicos Peptídicos/genética , Temperatura de Transição
13.
J Nat Prod ; 81(4): 806-810, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29513529

RESUMO

Two new cyclic peptides, pentaminomycins A (1) and B (2), were isolated from cultures of Streptomyces sp. RK88-1441. Based on the interpretation of the NMR, UV, IR, and MS data, the planar structures of 1 and 2 were elucidated as cyclic pentapeptides with a modified amino acid residue, N5-hydroxyarginine (N5-OH-Arg). The absolute configurations of the constituent amino acid residues were determined by the advanced Marfey's method. Localization of l- and d-amino acids in the sequence was ascertained by chiral analysis of the fragment peptide obtained from a partial hydrolysate; amino acids were identified by LC-MS. Pentaminomycin A (1) reduced α-MSH-stimulated melanin synthesis by suppressing the expression of melanogenic enzymes including tyrosinase, tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2).


Assuntos
Peptídeos Cíclicos/química , Streptomyces/química , Arginina/química , Cromatografia Líquida/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Espectrometria de Massas em Tandem/métodos
14.
J Nat Prod ; 80(11): 3025-3031, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29083895

RESUMO

Analysis of the genome sequence of Streptomyces sp. KCB13F003 showed the presence of a cryptic gene cluster encoding flavin-dependent halogenase and nonribosomal peptide synthetase. Pleiotropic approaches using multiple culture media followed by LC-MS-guided isolation and spectroscopic analysis enabled the identification of two new chlorinated cyclic hexapeptides, ulleungmycins A and B (1 and 2). Their structures, including absolute configurations, were determined by 1D and 2D NMR techniques, advanced Marfey's analysis, and GITC derivatization. The new peptides, featuring unusual amino acids 5-chloro-l-tryptophan and d-homoleucine, exhibited moderate antibacterial activities against Gram-positive pathogenic bacteria including methicillin-resistant and quinolone-resistant Staphylococcus aureus.


Assuntos
Peptídeos Cíclicos/isolamento & purificação , Streptomyces/química , Sequência de Aminoácidos , Antibacterianos/química , Cromatografia Líquida , Flavinas/metabolismo , Genômica , Bactérias Gram-Positivas/efeitos dos fármacos , Hidrocarbonetos Clorados , Resistência a Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Oxirredutases/metabolismo , Peptídeo Sintases/metabolismo , Peptídeos Cíclicos/química , Infecções Estafilocócicas , Staphylococcus aureus/efeitos dos fármacos , Streptomyces/genética , Triptofano/metabolismo
15.
Mol Cells ; 40(6): 401-409, 2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-28614913

RESUMO

The primary cilium is a non-motile microtubule-based organelle that protrudes from the surface of most human cells and works as a cellular antenna to accept extracellular signals. Primary cilia assemble from the basal body during the resting stage (G0 phase) and simultaneously disassemble with cell cycle re-entry. Defective control of assembly or disassembly causes diverse human diseases including ciliopathy and cancer. To identify the effective compounds for studying primary cilium disassembly, we have screened 297 natural compounds and identified 18 and 17 primary cilium assembly and disassembly inhibitors, respectively. Among them, the application of KY-0120, identified as Brefeldin A, disturbed Dvl2-Plk1-mediated cilium disassembly via repression of the interaction of CK1ɛ-Dvl2 and the expression of Plk1 mRNA. Therefore, our study may suggest useful compounds for studying the cellular mechanism of primary cilium disassembly to prevent ciliopathy and cancer.


Assuntos
Brefeldina A/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Cílios/efeitos dos fármacos , Proteínas Desgrenhadas/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Cílios/metabolismo , Ciliopatias/prevenção & controle , Proteínas Desgrenhadas/genética , Proteínas Desgrenhadas/metabolismo , Células HEK293 , Humanos , Neoplasias/prevenção & controle , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , RNA Mensageiro/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Quinase 1 Polo-Like
16.
J Nat Prod ; 80(5): 1378-1386, 2017 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-28406643

RESUMO

A bioassay-guided investigation in conjunction with chemical screening led to the isolation of three new glycosides, ulleungoside (1), 2-methylaminobenzoyl 6-deoxy-α-l-talopyranoside (2), and naphthomycinoside (3), along with three known secondary metabolites (5-7) from Streptomyces sp. KCB13F030. Their structures were elucidated by detailed NMR and MS spectroscopic analyses. Absolute configurational analysis of the sugar units based on the magnitudes of the coupling constants, NOESY correlations, chemical derivatization, and optical rotation measurements revealed that compounds 1-3 and 5 incorporate the rare deoxyhexose 6-deoxy-α-l-talopyranose. The absolute configuration of a polyketide extender unit of 3 was determined by applying the J-based configuration analysis and modified Mosher's method. Ulleungoside (1) and naphthomycin A (7) showed in vitro inhibitory effects against indoleamine 2,3-dioxygenase activity. Further bioevaluation revealed that compounds 1 and 7 had moderate antiproliferative activities against several cancer cell lines, and compounds 5 and 6, which are members of the piericidin family, induced autophagosome accumulation.


Assuntos
Glicosídeos/química , Glicosídeos/isolamento & purificação , Glicosídeos/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/química , Indolamina-Pirrol 2,3,-Dioxigenase/isolamento & purificação , Naftoquinonas/química , Naftoquinonas/isolamento & purificação , Policetídeos/química , Streptomyces/química , ortoaminobenzoatos/química , Bioensaio , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Naftoquinonas/farmacologia , Ressonância Magnética Nuclear Biomolecular , Policetídeos/isolamento & purificação , Policetídeos/farmacologia , ortoaminobenzoatos/isolamento & purificação , ortoaminobenzoatos/farmacologia
17.
J Nat Prod ; 79(10): 2703-2708, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27726391

RESUMO

Two new phenylspirodrimane derivatives, stachybotrysin (1) and stachybotrylactone B (2), were isolated from the cultures of the marine-derived fungus Stachybotrys sp. KCB13F013. The structures were determined by analyzing the spectroscopic data (1D and 2D NMR and MS) and chemical transformation, including the modified Mosher's method and single-crystal X-ray structure analysis. Compound 1 exhibited an inhibitory effect on osteoclast differentiation in bone marrow macrophage cells via suppressing the RANKL-induced activation of p-ERK, p-JNK, p-p38, c-Fos, and NFATc1.


Assuntos
Osteoclastos/efeitos dos fármacos , Stachybotrys/química , Animais , Células da Medula Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Técnicas de Cocultura , Regulação para Baixo/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Biologia Marinha , Camundongos , Estrutura Molecular , NF-kappa B/antagonistas & inibidores , Osteoblastos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/genética , Ligante RANK/farmacologia , Transdução de Sinais/efeitos dos fármacos
18.
Mar Drugs ; 14(4)2016 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-27049393

RESUMO

Salterns, one of the most extreme natural hypersaline environments, are a rich source of halophilic and halotolerant microorganisms, but they remain largely underexplored ecological niches in the discovery of bioactive secondary metabolites. In continued efforts to investigate the metabolic potential of microbial populations from chemically underexplored sites, three new lipopeptides named iturin F1, iturin F2 and iturin A9 (1-3), along with iturin A8 (4), were isolated from Bacillus sp. KCB14S006 derived from a saltern. The structures of the isolated compounds were established by 1D-, 2D-NMR and HR-ESIMS, and their absolute configurations were determined by applying advanced Marfey's method and CD spectroscopy. All isolates exhibited significant antifungal activities against various pathogenic fungi and moderate cytotoxic activities toward HeLa and src(ts)-NRK cell lines. Moreover, in an in vitro enzymatic assay, compound 4 showed a significant inhibitory activity against indoleamine 2,3-dioxygenase.


Assuntos
Bacillus/química , Bacillus/metabolismo , Lipopeptídeos/química , Lipopeptídeos/farmacologia , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Bactérias/efeitos dos fármacos , Linhagem Celular Tumoral , Fungos/efeitos dos fármacos , Células HeLa , Humanos , Espectroscopia de Ressonância Magnética/métodos
19.
Phytochemistry ; 122: 154-164, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26712614

RESUMO

Twelve metabolites, including five highly oxygenated azaphilones, geumsanols A-E, along with seven known analogues were isolated from Penicillium sp. KCB11A109, a fungus derived from a ginseng field. Their structures were assigned by spectroscopic means (NMR and MS), and stereochemistries were determined by extensive spectroscopic analyses ((1)H-(1)H coupling constants, NOESY, and HETLOC) and chemical derivatizations (modified Mosher's method and acetonide formation). The isolates were evaluated for their anticancer, antimicrobial, antimalarial activities, and phenotypic effects in zebrafish development. Of these compounds possessing no pyranoquinone core, only geumsanol E exhibited cytotoxic activities and toxic effects on zebrafish embryos, suggesting that a double bond at C-11 and C-12 is important for biological activity.


Assuntos
Benzopiranos/isolamento & purificação , Benzopiranos/farmacologia , Panax/microbiologia , Penicillium/química , Pigmentos Biológicos/isolamento & purificação , Pigmentos Biológicos/farmacologia , Animais , Benzopiranos/química , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Pigmentos Biológicos/química , Peixe-Zebra/crescimento & desenvolvimento
20.
Bioorg Med Chem Lett ; 25(22): 5398-401, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26403931

RESUMO

During the chemical investigation of marine-derived fungus, an unusual diketopiperazine (DKP) alkaloid, haenamindole (1), was isolated from a culture of the marine-derived fungus Penicillium sp. KCB12F005. The structure of 1, which possesses benzyl-hydroxypiperazindione and phenyl-pyrimidoindole rings system in the molecule, was elucidated by analysis of NMR and MS data. The stereochemistry of 1 was determined by ROESY and advanced Marfey's method.


Assuntos
Organismos Aquáticos/química , Dicetopiperazinas/química , Penicillium/química , Dicetopiperazinas/isolamento & purificação , Dicetopiperazinas/farmacologia , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA