Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
JBMR Plus ; 8(2): ziad014, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38505527

RESUMO

Bone homeostasis is maintained by tightly coordinated activities of bone-forming osteoblasts and bone-resorbing osteoclasts. In the present report, the role of Mer tyrosine kinase (MerTK) in bone metabolism was investigated. The expression of MerTK decreased upon BMP2 stimulation of osteoblast precursors. The femurs of Mertk-deficient mice showed significantly increased bone volume with concomitant increase of bone formation and reduction in bone resorption. These bone phenotypes were attributed to the increased osteoblast differentiation and mineralization accounted by the enhanced ß-catenin and Smad signaling in the absence of MerTK in osteoblast precursors. Although the Mertk-deficient bone marrow macrophages were predisposed to enhanced osteoclast differentiation via augmented Ca2+-NFATc1 signaling, the dramatic increase of Tnfsf11b/Tnfsf11 (Opg/Rankl) ratio in Mertk knockout bones and osteoblast precursors corroborated the reduction of osteoclastogenesis in Mertk deficiency. In ligature-induced periodontitis and ovariectomy models, the bone resorption was significantly attenuated in Mertk-deficient mice compared with wild-type control. Taken together, these data indicate novel role of MerTK in bone metabolism and suggest a potential strategy targeting MerTK in treating bone-lytic diseases including periodontitis and osteoporosis.

2.
PLoS Pathog ; 19(10): e1011743, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37871107

RESUMO

Gram-negative bacteria derived extracellular vesicles (EVs), also known as outer membrane vesicles, have attracted significant attention due to their pathogenic roles in various inflammatory diseases. We recently demonstrated that EVs secreted by the periodontopathogen Aggregatibacter actinomycetemcomitans (Aa) can cross the blood-brain barrier (BBB) and that their extracellular RNA cargo can promote the secretion of proinflammatory cytokines, such as IL-6 and TNF-α, in the brain. To gain more insight into the relationship between periodontal disease (PD) and neuroinflammatory diseases, we investigated the effect of Aa EVs in a mouse model of ligature-induced PD. When EVs were administered through intragingival injection or EV-soaked gel, proinflammatory cytokines were strongly induced in the brains of PD mice. The use of TLR (Toll-like receptor)-reporter cell lines and MyD88 knockout mice confirmed that the increased release of cytokines was triggered by Aa EVs via TLR4 and TLR8 signaling pathways and their downstream MyD88 pathway. Furthermore, the injection of EVs through the epidermis and gingiva resulted in the direct retrograde transfer of Aa EVs from axon terminals to the cell bodies of trigeminal ganglion (TG) neurons and the subsequent activation of TG neurons. We also found that the Aa EVs changed the action potential of TG neurons. These findings suggest that EVs derived from periodontopathogens such as Aa might be involved in pathogenic pathways for neuroinflammatory diseases, neuropathic pain, and other systemic inflammatory symptoms as a comorbidity of periodontitis.


Assuntos
Vesículas Extracelulares , Doenças Periodontais , Periodontite , Camundongos , Animais , Doenças Neuroinflamatórias , Gânglio Trigeminal , Fator 88 de Diferenciação Mieloide/metabolismo , Periodontite/metabolismo , Doenças Periodontais/metabolismo , Barreira Hematoencefálica/metabolismo , Citocinas/metabolismo , Camundongos Knockout , Vesículas Extracelulares/metabolismo
3.
J Bone Miner Res ; 37(3): 505-514, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34812548

RESUMO

The differentiation and activity of bone-resorbing osteoclasts are tightly regulated to maintain the homeostasis of healthy bones. In this study, the role of protein tyrosine phosphatase 1B (PTP1B) during osteoclastogenesis was studied in myeloid-specific Ptpn1-deficient (conditional knockout [cKO]) mice. The mRNA and protein expression of PTP1B increased during the formation of mature osteoclasts from mouse bone macrophages on stimulation with macrophage-colony stimulating factor (M-CSF) and receptor activator of nuclear factor κB ligand (RANKL). The Ptpn1 cKO mice exhibited increased femoral trabecular bone volume with a decreased number and activity of osteoclasts compared with control mice. The in vitro culture of osteoclast precursors corroborated the inhibition of osteoclastogenesis in cKO cells compared with control, with concomitantly decreased RANKL-dependent proliferation, lower osteoclast marker gene expression, reduced nuclear expression of nuclear factor of activated T cells cytoplasmic 1 (NFATc1), diminished intracellular Ca2+ oscillations, and increased phosphorylation of proto-oncogene tyrosine-protein kinase Src on inhibitory tyrosine residue. In a ligature-induced periodontitis model, Ptpn1 cKO mice exhibited attenuated osteoclastogenesis and alveolar bone loss following the induction of inflammation. The Ptpn1-deficient mice were similarly protected from ovariectomy-induced bone loss compared with control mice. These results provide a novel regulatory role of PTP1B in osteoclastogenesis and suggest a potential as a therapeutic target for bone-lytic diseases. © 2021 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Reabsorção Óssea , Osteogênese , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Animais , Reabsorção Óssea/metabolismo , Diferenciação Celular , Feminino , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/metabolismo , Ovariectomia , Monoéster Fosfórico Hidrolases/metabolismo , Ligante RANK/metabolismo , Tirosina/metabolismo
4.
Free Radic Biol Med ; 160: 575-595, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32896600

RESUMO

Regulating amyloid beta (Aß) pathology and neuroinflammatory responses holds promise for the treatment of Alzheimer's disease (AD) and other neurodegenerative and/or neuroinflammation-related diseases. In this study, the effects of KVN93, an inhibitor of dual-specificity tyrosine phosphorylation-regulated kinase-1A (DYRK1A), on cognitive function and Aß plaque levels and the underlying mechanism of action were evaluated in 5x FAD mice (a mouse model of AD). KVN93 treatment significantly improved long-term memory by enhancing dendritic synaptic function. In addition, KVN93 significantly reduced Aß plaque levels in 5x FAD mice by regulating levels of the Aß degradation enzymes neprilysin (NEP) and insulin-degrading enzyme (IDE). Moreover, Aß-induced microglial and astrocyte activation were significantly suppressed in the KVN-treated 5xFAD mice. KVN93 altered neuroinflammation induced by LPS in microglial cells but not primary astrocytes by regulating TLR4/AKT/STAT3 signaling, and in wild-type mice injected with LPS, KVN93 treatment reduced microglial and astrocyte activation. Overall, these results suggest that the novel DYRK1A inhibitor KVN93 is a potential therapeutic drug for regulating cognitive/synaptic function, Aß plaque load, and neuroinflammatory responses in the brain.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Animais , Cognição , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Microglia , Placa Amiloide/tratamento farmacológico , Quinases Dyrk
5.
Biomolecules ; 10(2)2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-32079203

RESUMO

Adpsin is an adipokine that stimulates insulin secretion from ß-cells and improves glucose tolerance. Its expression has been found to be markedly reduced in obese animals. However, it remains unclear what factors lead to downregulation of adipsin in the context of obesity. Endoplasmic reticulum (ER) stress response is activated in various tissues under obesity-related conditions and can induce transcriptional reprogramming. Therefore, we aimed to investigate the relationship between adipsin expression and ER stress in adipose tissues during obesity. We observed that obese mice exhibited decreased levels of adipsin in adipose tissues and serum and increased ER stress markers in adipose tissues compared to lean mice. We also found that ER stress suppressed adipsin expression via adipocytes-intrinsic mechanisms. Moreover, the ER stress-mediated downregulation of adipsin was at least partially attributed to decreased expression of peroxisome proliferator-activated receptor γ (PPARγ), a key transcription factor in the regulation of adipocyte function. Finally, treatment with chemical chaperones recovered the ER stress-mediated downregulation of adipsin and PPARγ in vivo and in vitro. Our findings suggest that activated ER stress in adipose tissues is an important cause of the suppression of adipsin expression in the context of obesity.


Assuntos
Adipócitos/metabolismo , Regulação para Baixo , Estresse do Retículo Endoplasmático , Células 3T3-L1 , Adipócitos/citologia , Tecido Adiposo/metabolismo , Animais , Células Cultivadas , Fator D do Complemento/genética , Fator D do Complemento/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , Obesidade/metabolismo , PPAR gama/genética , PPAR gama/metabolismo
6.
J Neuroinflammation ; 16(1): 190, 2019 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-31655606

RESUMO

BACKGROUND: The FDA-approved small-molecule drug dasatinib is currently used as a treatment for chronic myeloid leukemia (CML). However, the effects of dasatinib on microglial and/or astrocytic neuroinflammatory responses and its mechanism of action have not been studied in detail. METHODS: BV2 microglial cells, primary astrocytes, or primary microglial cells were treated with dasatinib (100 or 250 nM) or vehicle (1% DMSO) for 30 min or 2 h followed by lipopolysaccharide (LPS; 200 ng/ml or 1 µg/ml) or PBS for 5.5 h. RT-PCR, real-time PCR; immunocytochemistry; subcellular fractionation; and immunohistochemistry were subsequently conducted to determine the effects of dasatinib on LPS-induced neuroinflammation. In addition, wild-type mice were injected with dasatinib (20 mg/kg, intraperitoneally (i.p.) daily for 4 days or 20 mg/kg, orally administered (p.o.) daily for 4 days or 2 weeks) or vehicle (4% DMSO + 30% polyethylene glycol (PEG) + 5% Tween 80), followed by injection with LPS (10 mg/kg, i.p.) or PBS. Then, immunohistochemistry was performed, and plasma IL-6, IL-1ß, and TNF-α levels were analyzed by ELISA. RESULTS: Dasatinib regulates LPS-induced proinflammatory cytokine and anti-inflammatory cytokine levels in BV2 microglial cells, primary microglial cells, and primary astrocytes. In BV2 microglial cells, dasatinib regulates LPS-induced proinflammatory cytokine levels by regulating TLR4/AKT and/or TLR4/ERK signaling. In addition, intraperitoneal injection and oral administration of dasatinib suppress LPS-induced microglial/astrocyte activation, proinflammatory cytokine levels (including brain and plasma levels), and neutrophil rolling in the brains of wild-type mice. CONCLUSIONS: Our results suggest that dasatinib modulates LPS-induced microglial and astrocytic activation, proinflammatory cytokine levels, and neutrophil rolling in the brain.


Assuntos
Astrócitos/metabolismo , Dasatinibe/farmacologia , Lipopolissacarídeos/toxicidade , Microglia/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Células Cultivadas , Dasatinibe/uso terapêutico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT3/antagonistas & inibidores
7.
Front Mol Neurosci ; 12: 192, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31474828

RESUMO

Recently, we reported that ALWPs, which we developed by combining Liuwei Dihuang pills (LWPs) with antler, regulate the LPS-induced neuroinflammatory response and rescue LPS-induced short- and long-term memory impairment in wild-type (WT) mice. In the present study, we examined the effects of ALWPs on Alzheimer's disease (AD) pathology and cognitive function in WT mice as well as 5x FAD mice (a mouse model of AD). We found that administration of ALWPs significantly reduced amyloid plaque levels in 5x FAD mice and significantly decreased amyloid ß (Aß) levels in amyloid precursor protein (APP)-overexpressing H4 cells. In addition, ALWPs administration significantly suppressed tau hyperphosphorylation in 5x FAD mice. Oral administration of ALWPs significantly improved long-term memory in scopolamine (SCO)-injected WT mice and 5x FAD mice by altering dendritic spine density. Importantly, ALWPs promoted spinogenesis in primary hippocampal neurons and WT mice and modulated the dendritic spine number in an extracellular signal-regulated kinase (ERK)-dependent manner. Taken together, our results suggest that ALWPs are a candidate therapeutic drug for AD that can modulate amyloid plaque load, tau phosphorylation, and synaptic/cognitive function.

8.
ACS Nano ; 13(8): 8766-8783, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31310506

RESUMO

Complex amyloid aggregation of amyloid-ß (1-40) (Aß1-40) in terms of monomer structures has not been fully understood. Herein, we report the microscopic mechanism and pathways of Aß1-40 aggregation with macroscopic viewpoints through tuning its initial structure and solubility. Partial helical structures of Aß1-40 induced by low solvent polarity accelerated cytotoxic Aß1-40 amyloid fibrillation, while predominantly helical folds did not aggregate. Changes in the solvent polarity caused a rapid formation of ß-structure-rich protofibrils or oligomers via aggregation-prone helical structures. Modulation of the pH and salt concentration transformed oligomers to protofibrils, which proceeded to amyloid formation. We reveal diverse molecular mechanisms underlying Aß1-40 aggregation with conceptual energy diagrams and propose that aggregation-prone partial helical structures are key to inducing amyloidogenesis. We demonstrate that context-dependent protein aggregation is comprehensively understood using the macroscopic phase diagram, which provides general insights into differentiation of amyloid formation and phase separation from unfolded and folded structures.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/ultraestrutura , Fragmentos de Peptídeos/ultraestrutura , Agregação Patológica de Proteínas/genética , Conformação Proteica em alfa-Hélice/genética , Doença de Alzheimer/patologia , Amiloide/química , Amiloide/genética , Peptídeos beta-Amiloides/química , Humanos , Fragmentos de Peptídeos/química , Conformação Proteica em Folha beta/genética , Dobramento de Proteína/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Solubilidade
9.
Chemistry ; 23(13): 3117-3125, 2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28000284

RESUMO

A new mononuclear nickel(II) complex, [NiII (dpaq)Cl] (1), containing a tetradentate monoamido ligand, dpaq (dpaq=2-[bis(pyridin-2-ylmethyl)amino]-N-(quinolin-8-yl)acetamide), has been synthesized and characterized by IR spectroscopy, elemental analysis, and UV/Vis spectroscopy. The structure of the nickel complex has been determined by X-ray crystallography. This nonheme NiII complex 1 catalyzed the epoxidation reaction of a wide range of olefins with meta-chloroperoxybenzoic acid (m-CPBA) under mild conditions. Olefin epoxidation using this catalytic system has been proposed to involve a new reactive NiIV -oxo (4) species, based on the evidence from a PPAA (peroxyphenylacetic acid) probe, Hammett studies, H218 O exchange experiments, and ESI mass spectroscopic analysis. Moreover, the nature of solvent significantly influenced partitioning between heterolytic and homolytic O-O bond cleavage of the Ni-acylperoxo intermediate (2). The O-O bond of 2 proceeded predominantly through heterolytic cleavage in a protic solvent, such as CH3 OH. These results suggest that possibly a NiIV -oxo species is a common reactive intermediate in protic solvents. The two active oxidants, namely NiIV -oxo (3) and NiIII -oxo (4), which are responsible for stereospecific olefin epoxidation and radical-type oxidations, respectively, operate in aprotic solvents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA