Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Water Res ; 165: 114970, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31426007

RESUMO

To properly design reverse electrodialysis (RED) stacks, modeling of ion transport and prediction of power generation on the single RED stack are very important. Currently, the Nernst-Planck equation is widely adopted to simulate ion transport through IEMs. However, applying typical Nernst-Planck equation is not proper to analyze ion transport through the heterogeneous thin-composite pore-filling membrane because of the non-conductive site in the membrane matrix. Herein, we firstly introduced modified Nernst-Planck equation by addressing conductive traveling length (CTL) to simulate the ion transport through the thin-composite pore-filling membranes and the performance of a single RED stack with the same membranes. Also, 100 cell-pairs of RED stacks were assembled to validate modified Nernst-Planck equation according to the flow rate and membrane types. Under the OCV condition, the conductivity of the effluents was measured to validate the modified Nernst-Planck equation, and differences between modeling and experiments were less than 1.5 mS/cm. Theoretical OCV and current density were estimated by using modified Nernst-Planck equation. In particular, hydrophobicity on the surface of the heterogeneous membrane was considered to describe ion transport through the pore-filling membranes. Moreover, power generation from RED stacks was calculated according to the flow rate and the number of cell pairs.


Assuntos
Membranas Artificiais , Fontes de Energia Bioelétrica , Condutividade Elétrica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA