Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 35(24): 7769-7782, 2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31099245

RESUMO

A membrane with selective wettability to either oil or water has been utilized for highly efficient, environmentally friendly membrane-based oil-water separation. However, a predictive model, which can be used to evaluate the overall separation performance of the membrane, still needs further development. Herein, we investigate three separation performance parameters, that is, separation efficiency, liquid intrusion pressure, and mass flux in particular, as a function of pore geometry and liquid properties using metallic meshes whose surface wettability is modified by scalable spray coating. We show that the prepared membrane exhibits a separation efficiency over 98% below the intrusion pressure, while the intrusion pressure increases with the decrease of pore size of the membrane. Particularly, we develop a semi-empirical model for the mass flux through the membrane. As application examples of our performance analysis, we successfully predict the separation time for one-way and two-way gravity-driven separation of the oil-water mixture, the decrease of the mass flux due to membrane fouling, and the maximum allowable separation capacity of the given membrane. This work can help to design optimal membrane-based oil-water separation systems for actual industrial applications by providing a selection guideline for separation membranes.

2.
Soft Matter ; 14(19): 3760-3767, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29701744

RESUMO

We study the influence of geometric anisotropy of micro-grate structures on the spreading dynamics of water drops after impact. It is found that the maximal spreading diameter along the parallel direction to grates becomes larger than that along the transverse direction beyond a certain Weber number, while the extent of such an asymmetric spreading increases with the structural pitch of grates and Weber number. By employing grates covered with nanostructures, we exclude the possible influences coming from the Cassie-to-Wenzel transition and the circumferential contact angle variation on the spreading diameter. Then, based on a simplified energy balance model incorporating slip length, we propose that slip length selectively enhances the spreading diameter along the parallel direction, being responsible for the asymmetric drop spreading. We believe that our work will help better understand the role of microstructures in controlling the drop dynamics during impact, which has relevance to various engineering applications.

3.
Phys Rev Lett ; 118(1): 014501, 2017 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-28106449

RESUMO

When a water drop impacts a mesh having submillimeter pores, a part of the drop penetrates through the mesh if the impact velocity is sufficiently large. Here we show that different surface wettability, i.e., hydrophobicity and superhydrophobicity, leads to different water penetration dynamics on a mesh during drop impact. We show, despite the water repellence of a superhydrophobic surface, that water can penetrate a superhydrophobic mesh more easily (i.e., at a lower impact velocity) over a hydrophobic mesh via a penetration mechanism unique to a superhydrophobic mesh. On a superhydrophobic mesh, the water penetration can occur during the drop recoil stage, which appears at a lower impact velocity than the critical impact velocity for water penetration right upon impact. We propose that this unique water penetration on a superhydrophobic mesh can be attributed to the combination of the hydrodynamic focusing and the momentum transfer from the water drop when it is about to bounce off the surface, at which point the water drop retrieves most of its kinetic energy due to the negligible friction on superhydrophobic surfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA