Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Phys Chem B ; 128(23): 5792-5801, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38832806

RESUMO

Controlling the valency of directional interactions of patchy particles is insufficient for the selective formation of target crystalline structures due to the competition between phases of similar free energy. Examples of such are stacking hybrids of interwoven hexagonal and cubic diamonds with (i) its liquid phase, (ii) arrested glasses, or (iii) clathrates, all depending on the relative patch size, despite being within the one-bond-per-patch regime. Herein, using molecular dynamics simulations, we demonstrate that although tetrahedral patchy particles with narrow patches can assemble into clathrates or stacking hybrids in the bulk, this behavior can be suppressed by the application of external surface potential. Depending on its strength, the selective growth of either cubic diamond crystals or empty sII clathrate cages can be achieved. The formation of a given ordered network depends on the structure of the first adlayer, which is commensurate with the emerging network.

2.
J Chem Phys ; 160(19)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38752534

RESUMO

Achieving the formation of target open crystalline lattices from colloidal particles is of paramount importance for their potential application in photonics. Examples of such desired structures are the diamond, tetrastack, and pyrochlore lattices. Here, we demonstrate that the self-assembly of tetravalent patchy particles results in the selective formation of cubic tetrastack crystals, both in the bulk and in the systems subjected to external fields exerted by the solid substrate. It is demonstrated that the presence of an external field allows for the formation of well-defined single crystals with a low density of defects. Moreover, depending on the strength of the applied external field, the mechanism of epitaxial growth changes. For weakly attractive external fields, the crystallization occurs in a similar manner as in the bulk, since the fluid does not wet the substrate. Nonetheless, the formed crystal is considerably better ordered than the crystals formed in bulk, since the surface induces the ordering in the first layer. On the other hand, it is demonstrated that the formation of well-ordered cubic tetrastack crystals is considerably enhanced by the increase in external field strength, and the formation of the thick crystalline film occurs via a series of layering transitions.

3.
Nanoscale ; 15(48): 19820, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38019680

RESUMO

Correction for 'Pursuing colloidal diamonds' by Lukasz Baran et al., Nanoscale, 2023, 15, 10623-10633, https://doi.org/10.1039/D3NR01771K.

4.
ACS Nano ; 17(20): 20194-20202, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37788293

RESUMO

Materials with disordered structures may exhibit interesting properties. Metal-organic frameworks (MOFs) are a class of hybrid materials composed of metal nodes and coordinating organic linkers. Recently, there has been growing interest in MOFs with structural disorder and the investigations of amorphous structures on surfaces. Herein, we demonstrate a bottom-up method to construct disordered molecular networks on metal surfaces by selecting two organic molecule linkers with the same symmetry but different sizes for preparing two-component samples with different stoichiometric ratios. The amorphous networks are directly imaged by scanning tunneling microscopy under ultrahigh vacuum with a submolecular resolution, allowing us to quantify its degree of disorder and other structural properties. Furthermore, we resort to molecular dynamics simulations to understand the formation of the amorphous metal-organic networks. The results may advance our understanding of the mechanism of formation of monolayer molecular networks with structural disorders, facilitating the design and exploration of amorphous MOF materials with intriguing properties.

5.
Nanoscale ; 15(25): 10623-10633, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37310349

RESUMO

The endeavor to selectively fabricate a cubic diamond is challenging due to the formation of competing phases such as its hexagonal polymorph or others possessing similar free energy. The necessity to achieve this is of paramount importance since the cubic diamond is the only polymorph exhibiting a complete photonic bandgap, making it a promising candidate in view of photonic applications. Herein, we demonstrate that due to the presence of an external field and delicate manipulation of its strength we can attain selectivity in the formation of a cubic diamond in a one-component system comprised of designer tetrahedral patchy particles. The driving force of such a phenomenon is the structure of the first adlayer which is commensurate with the (110) face of the cubic diamond. Moreover, after a successful nucleation event, once the external field is turned off, the structure remains stable, paving an avenue for further post-synthetic treatment.


Assuntos
Diamante , Fótons , Diamante/química
6.
ACS Omega ; 8(21): 18863-18873, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37273616

RESUMO

We use Monte Carlo simulations to investigate the behavior of Janus spheres composed of attractive and repulsive parts confined between two parallel solid surfaces. The slits with identical and competing walls are studied. The adsorption isotherms of Janus particles are determined, and the impact of the density in the pore on the morphology is discussed in detail. So far, this issue has not been systematically investigated. New, unique structures are observed along the isotherms, including the bilayer and three-layer structures located at different distances from the walls. We analyze how selected parameters affect the positional and orientational ordering in these layers. In some cases, the particles form highly ordered hexagonal lattices.

7.
J Chem Phys ; 158(6): 064503, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36792509

RESUMO

With an ever-increasing interest in water properties, many intermolecular force fields have been proposed to describe the behavior of water. Unfortunately, good models for liquid water usually cannot provide simultaneously an accurate melting point for ice. For this reason, the TIP4P/Ice model was developed for targeting the melting point and has become the preferred choice for simulating ice at coexistence. Unfortunately, available data for its dynamic properties in the liquid state are scarce. Therefore, we demonstrate a series of simulations aimed at the calculation of transport coefficients for the TIP4P/Ice model over a large range of thermodynamic conditions, ranging from T = 245 K to T = 350 K, for the temperature, and from p = 0 to p = 500 MPa, for the pressure. We have found that the self-diffusion (shear viscosity) exhibits smaller (increased) values than TIP4P/2005 and experiments. However, rescaling the temperature with respect to the triple point temperature, as in a corresponding states plot, we find that TIP4P/Ice compares very well with TIP4P/2005 and experiment. Such observations allow us to infer that despite the different original purposes of these two models examined here, one can benefit from a vast number of reports regarding the behavior of transport coefficients for the TIP4P/2005 model and utilize them following the routine described in this paper.

8.
Proc Natl Acad Sci U S A ; 119(49): e2209545119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36442119

RESUMO

The origin of ice slipperiness has been a matter of great controversy for more than a century, but an atomistic understanding of ice friction is still lacking. Here, we perform computer simulations of an atomically smooth substrate sliding on ice. In a large temperature range between 230 and 266 K, hydrophobic sliders exhibit a premelting layer similar to that found at the ice/air interface. On the contrary, hydrophilic sliders show larger premelting and a strong increase of the first adsorption layer. The nonequilibrium simulations show that premelting films of barely one-nanometer thickness are sufficient to provide a lubricating quasi-liquid layer with rheological properties similar to bulk undercooled water. Upon shearing, the films display a pattern consistent with lubricating Couette flow, but the boundary conditions at the wall vary strongly with the substrate's interactions. Hydrophobic walls exhibit large slip, while hydrophilic walls obey stick boundary conditions with small negative slip. By compressing ice above atmospheric pressure, the lubricating layer grows continuously, and the rheological properties approach bulk-like behavior. Below 260 K, the equilibrium premelting films decrease significantly. However, a very large slip persists on the hydrophobic walls, while the increased friction on hydrophilic walls is sufficient to melt ice and create a lubrication layer in a few nanoseconds. Our results show that the atomic-scale frictional behavior of ice is a combination of spontaneous premelting, pressure melting, and frictional heating.


Assuntos
Gelo , Tartarugas , Animais , Fricção , Lubrificação , Filmes Cinematográficos , Adsorção
9.
Beilstein J Nanotechnol ; 11: 884-890, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32566438

RESUMO

We introduce a molecular dynamics (MD) coarse-grained model for the description of tripod building blocks. This model has been used by us already for linear, V-shape, and tetratopic molecules. We wanted to further extend its possibilities to trifunctional molecules to prove its versatility. For the chosen systems we have also compared the MD results with Monte Carlo results on a triangular lattice. We have shown that the constraints present in the latter method can enforce the formation of completely different structures, not reproducible with off-lattice simulations. In addition to that, we have characterized the obtained structures regarding various parameters such as theoretical diffraction pattern and average association number.

10.
Phys Chem Chem Phys ; 20(36): 23363-23377, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30177976

RESUMO

Self-assembly of functional molecules on solid substrates has recently attracted special attention as a versatile method for the fabrication of low dimensional nanostructures with tailorable properties. In this contribution, using theoretical modeling, we demonstrate how the architecture of 2D molecular assemblies can be predicted based on the individual properties of elementary building blocks at play. To that end a model star-shaped tetratopic molecule is used and its self-assembly on a (111) surface is simulated using the lattice Monte Carlo method. Several test cases are studied in which the molecule bears terminal arm centers providing interactions with differently encoded directionality. Our theoretical results show that manipulation of the interaction directions can be an effective way to direct the self-assembly towards extended periodic superstructures (2D crystals) as well as to create assemblies characterized by a lower degree of order, including glassy overlayers and quasi one-dimensional molecular connections. The obtained structures are described and classified with respect to their main geometric parameters. A small library of the tetratopic molecules and the corresponding superstructures is provided to categorize the structure-property relationship in the modeled systems. The results of our simulations can be helpful to 2D crystal engineering and surface-confined polymerization techniques as they give hints on how to functionalize tetrapod organic building blocks which would be able to create superstructures with predefined spatial organization and range of order.

11.
Soft Matter ; 14(16): 3115-3126, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29624197

RESUMO

We report the results of large scale molecular dynamics simulations conducted for sparsely grafted disks in two-dimensional systems. The main goal of this work is to show how the ligand mobility influences the self-assembly of particles decorated with short chains. We also analyze the impact of the chain length on the structure of dense phases. A crossover between the systems controlled by the core-core or by the segment-segment interactions is discussed. We prove that the ligand mobility determines the structure of the system. The particles with fixed tethers are found to order into different structures, an amorphous phase, hexagonal or honeycomb lattices, and a "spaghetti"-like phase containing single strings of cores, depending on the length of attached chains. The disks with mobile monomers assemble into a hexagonal structure, while the particles with longer mobile chains attached to them form a lamellar phase consisting of double strings of cores.

12.
Soft Matter ; 12(47): 9538-9548, 2016 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-27834426

RESUMO

Using Monte Carlo simulation we study two dimensional mixtures of patchy and spherically symmetric particles. Such mixtures can be synthesized experimentally by covering colloids with appropriate types of DNA strands [L. Feng, et al., Adv. Mater., 2013, 25, 2779]. We focus on finding out the ordered structures that can be formed in such systems. The type of ordered phase strongly depends on the valency, size and binding energy of the patchy particles. If the patch size is small enough, i.e. it allows only one spherically symmetric particle to be bound, the ordered structure follows either a hexagonal or a tetragonal pattern depending on the valency of the patchy particles. Moreover, we find stable quasicrystals of dodecagonal symmetry. Additional structures can be obtained if the patches are larger and the binding energy is higher. Depending on the valency of the patchy particles we find either lanes or branched structures forming polygons of the spherically symmetric particles with few patchy particles inside. For pentavalent patchy particles we find stable quasicrystals of decagonal symmetry.

13.
J Phys Condens Matter ; 27(41): 415101, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26414501

RESUMO

We use grand canonical Monte Carlo simulation paired with multiple histogram reweighting, hyperparallel tempering and finite size scaling to investigate the structure and phase behaviour of monolayers of diblock copolymers. The chain molecules are arranged on the square lattice and we consider both fully flexible and rod-coil polymer models. In contrast to the majority of previous studies we assume that the interactions between the segments belonging to one of the two subunits are weaker than the remaining segment-segment interactions. We find that when the diblock copolymer is fully flexible, this choice of the interactions leads to a suppression of the ordered phase, and the phase behaviour is analogous to that of the fully flexible homopolymer model. However, when one of the subunits is rigid, we observe the formation of a novel hairpin chessboard ordered structure with fully stretched chains bent in the middle. The topology of the phase diagram depends on the chain length. For shorter chains the global phase diagram features a critical point and a triple point. For longer chains the gas-disordered liquid phase transition is suppressed and only the order-disorder transition remains stable. The resulting phase diagram is of the swan neck type.

14.
J Chem Phys ; 141(4): 044910, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-25084959

RESUMO

Using hyper-parallel tempering Monte Carlo simulation, multiple histogram reweighting method, and finite size scaling, we investigate the adsorption of fully flexible and rod-coil chains on the square lattice. We find that the phase behaviour changes with the chain length and flexibility. For homonuclear rod-coil chains, the phase diagram consists of only gas-disorder liquid critical point. Weakening of the interaction energy between the segments belonging to two different subunits gives rise to an order-disorder transition. The topology of the resulting phase diagram depends on the chain length and flexibility. For short chains, both fully flexible and rod-coil diblock copolymers form lamellar ordered phase with fully stretched chains, and the order-disorder transition is of the first order. The phase diagrams are similar for both chain architectures and consist of two binodals meeting in the triple point. When the chain length increases the order-disorder transition becomes second-order and the difference in the phase behaviour between the fully flexible and the rod-coil diblock copolymers becomes more pronounced. While for the former chain architecture the topology of the phase diagram involves a λ-line which meets the gas-disordered liquid binodal in the critical end-point, in the latter case the λ-line meets the gas-disordered liquid critical point and forms the tricritical point. We trace back these changes to the change in the morphology of the ordered phase. The mechanism of the order-disorder transition involves the formation of domains resembling those observed during the spinodal decomposition process. The domains subsequently merge and arrange into lamellae. These observations are supported by integral geometry analysis.

15.
J Am Chem Soc ; 135(18): 6942-50, 2013 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-23590179

RESUMO

We report a joint computational and experimental study on the concentration-dependent self-assembly of a flat C3-symmetric molecule at surfaces. As a model system we have chosen a rigid molecular module, 1,3,5-tris(pyridine-4-ylethynyl)benzene, which can undergo self-association via hydrogen bonding (H-bonding) to form ordered 2D nanostructures. In particular, the lattice Monte Carlo method, combined with density functional calculations, was employed to explore the spontaneous supramolecular organization of this tripod-shaped molecule under surface confinement. We analyzed the stability of different weak H-bonded patterns and the influence of the concentration of the starting molecule on the 2D supramolecular packing. We found that ordered, densely packed monolayers and 2D porous networks are obtained at high and low concentrations, respectively. A concentration-dependent scanning tunneling microscopy investigation of the molecular self-assembly at a graphite-solution interface revealed supramolecular motifs, which are in perfect agreement with those obtained by simulations. Therefore, our computational approach represents a step forward toward the deterministic prediction of molecular self-assembly at surfaces and interfaces.


Assuntos
Derivados de Benzeno/síntese química , Nanoestruturas/química , Piridinas/síntese química , Derivados de Benzeno/química , Ligação de Hidrogênio , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Modelos Moleculares , Estrutura Molecular , Piridinas/química , Propriedades de Superfície
16.
J Chem Phys ; 137(22): 224505, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23249015

RESUMO

Monte Carlo simulation study of the vapor-liquid coexistence in two-dimensional square-well fluid with 12 different values of the attraction shell width are reported. The densities of coexisting vapor and liquid phases as well as the coexisting chemical potentials for each simulated system are determined by means of hyperparallel tempering and histogram reweighting technique, while the location of critical point was tuned by means of the finite size scaling analysis. By studying dependence of the critical point parameters on the attraction shell width, we found that critical point temperature and critical point chemical potential both are changing monotonically while the critical point density oscillates, exhibiting higher or lower values depending on the particular width of the attraction shell.

17.
ACS Nano ; 6(1): 897-903, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22206261

RESUMO

With the use of a single building block, two nanoporous patterns with nearly equal packing density can be formed upon self-assembly at a liquid-solid interface. Moreover, the formation of both of these porous networks can be selectively and homogenously induced by changing external parameters like solvent, concentration, and temperature. Finally, their porous properties are exploited to host up to three different guest molecules in a spatially resolved way.


Assuntos
Cristalização/métodos , Microscopia Eletrônica de Transmissão e Varredura/métodos , Modelos Químicos , Modelos Moleculares , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Simulação por Computador , Teste de Materiais , Modelos Estatísticos , Método de Monte Carlo , Tamanho da Partícula
18.
J Colloid Interface Sci ; 241(1): 169-177, 2001 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-11502119

RESUMO

We investigate adsorption of a Lennard-Jones fluid in slit-like pores with energetically heterogeneous walls by using Grand Canonical Monte Carlo simulations and a density functional approach. The model of a fluid-wall potential is qualitatively similar to that invoked by Röcken et al. (J. Chem. Phys. 108, 8089, (1999); i.e., it consists of a homogeneous part that varies in the direction perpendicular to the wall and a periodic part, varying also in one direction parallel to the wall, but in contrast to the above mentioned work, both parts of the fluid-wall potential are modeled by Lennard-Jones (9, 3) type functions. The structure of the adsorbed film is characterized by local densities. We evaluate the phase diagrams for several systems characterized by different corrugation of the adsorbing potential and discuss the discrepancies between theoretical predictions and computer simulations. Copyright 2001 Academic Press.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA