Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci Methods ; 390: 109827, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36871604

RESUMO

BACKGROUND: In vivo patch-clamp recording techniques provide access to the sub- and suprathreshold membrane potential dynamics of individual neurons during behavior. However, maintaining recording stability throughout behavior is a significant challenge, and while methods for head restraint are commonly used to enhance stability, behaviorally related brain movement relative to the skull can severely impact the success rate and duration of whole-cell patch-clamp recordings. NEW METHOD: We developed a low-cost, biocompatible, and 3D-printable cranial implant capable of locally stabilizing brain movement, while permitting equivalent access to the brain when compared to a conventional craniotomy. RESULTS: Experiments in head-restrained behaving mice demonstrate that the cranial implant can reliably reduce the amplitude and speed of brain displacements, significantly improving the success rate of recordings across repeated bouts of motor behavior. COMPARISON WITH EXISTING METHOD(S): Our solution offers an improvement on currently available strategies for brain stabilization. Due to its small size, the implant can be retrofitted to most in vivo electrophysiology recording setups, providing a low cost, easily implementable solution for increasing intracellular recording stability in vivo. CONCLUSIONS: By facilitating stable whole-cell patch-clamp recordings in vivo, biocompatible 3D printed implants should accelerate the investigation of single neuron computations underlying behavior.


Assuntos
Neurônios , Roedores , Camundongos , Animais , Neurônios/fisiologia , Potenciais da Membrana/fisiologia , Encéfalo/fisiologia , Crânio/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA