RESUMO
[This corrects the article DOI: 10.3389/fpls.2020.00529.].
RESUMO
Plant defence peptides are paramount endogenous danger signals secreted after a challenge, intensifying the plant immune response. The peptidic hormone Systemin (Sys) was shown to participate in resistance in several plant pathosystems, although the mechanisms behind Sys-induced resistance when exogenously applied remain elusive. We performed proteomic, metabolomic, and enzymatic studies to decipher the Sys-induced changes in tomato plants in either the absence or the presence of Botrytis cinerea infection. Sys treatments triggered direct proteomic rearrangement mostly involved in carbon metabolism and photosynthesis. However, the final induction of defence proteins required concurrent challenge, triggering priming of pathogen-targeted proteins. Conversely, at the metabolomic level, Sys-treated plants showed an alternative behaviour following a general priming profile. Of the primed metabolites, the flavonoids rutin and isorhamnetin and two alkaloids correlated with the proteins 4-coumarate-CoA-ligase and chalcone-flavanone-isomerase triggered by Sys treatment. In addition, proteomic and enzymatic analyses revealed that Sys conditioned the primary metabolism towards the production of available sugars that could be fuelling the priming of callose deposition in Sys-treated plants; furthermore, PR1 appeared as a key element in Sys-induced resistance. Collectively, the direct induction of proteins and priming of specific secondary metabolites in Sys-treated plants indicated that post-translational protein regulation is an additional component of priming against necrotrophic fungi.
Assuntos
Botrytis , Resistência à Doença , Doenças das Plantas , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Solanum lycopersicum/imunologia , Solanum lycopersicum/metabolismo , Solanum lycopersicum/genética , Botrytis/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteômica , PeptídeosRESUMO
BACKGROUND: Mycorrhizal plants show enhanced resistance to biotic stresses, but few studies have addressed mycorrhiza-induced resistance (MIR) against biotic challenges in woody plants, particularly citrus. Here we present a comparative study of two citrus species, Citrus aurantium, which is resistant to Tetranychus urticae, and Citrus reshni, which is highly susceptible to T. urticae. Although both mycorrhizal species are protected in locally infested leaves, they show very distinct responses to MIR. RESULTS: Previous studies have indicated that C. aurantium is insensitive to MIR in systemic tissues and MIR-triggered antixenosis. Conversely, C. reshni is highly responsive to MIR which triggers local, systemic and indirect defense, and antixenosis against the pest. Transcriptional, hormonal and inhibition assays in C. reshni indicated the regulation of jasmonic acid (JA)- and abscisic acid-dependent responses in MIR. The phytohormone jasmonic acid isoleucine (JA-Ile) and the JA biosynthesis gene LOX2 are primed at early timepoints. Evidence indicates a metabolic flux from phenylpropanoids to specific flavones that are primed at 24 h post infestation (hpi). MIR also triggers the priming of naringenin in mycorrhizal C. reshni, which shows a strong correlation with several flavones and JA-Ile that over-accumulate in mycorrhizal plants. Treatment with an inhibitor of phenylpropanoid biosynthesis C4H enzyme impaired resistance and reduced the symbiosis, demonstrating that phenylpropanoids and derivatives mediate MIR in C. reshni. CONCLUSION: MIR's effectiveness is inversely correlated to basal immunity in different citrus species, and provides multifaceted protection against T. urticae in susceptible C. reshni, activating rapid local and systemic defenses that are mainly regulated by the accumulation of specific flavones and priming of JA-dependent responses. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Assuntos
Citrus , Micorrizas , Tetranychidae , Tetranychidae/fisiologia , Citrus/microbiologia , Citrus/imunologia , Citrus/parasitologia , Micorrizas/fisiologia , Animais , Imunidade Vegetal , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Especificidade da Espécie , Reguladores de Crescimento de Plantas/metabolismo , Doenças das Plantas/parasitologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologiaRESUMO
Tomatoes are one of the most important vegetables thanks to their taste attributes and nutritional value. Their cultivation is threatened by various pathogens including viruses. The application of resistance inducers (RI), such as benzo(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH) may be used to enhance plant performance against viruses. Here we aimed to compare the impact of BTH and its choline derivative (Chol-BTH) on resistance induction and antioxidant properties of healthy plants and tomato mosaic virus (ToMV)-infected ones. The response of tomato plants to treatment with BTH or Chol-BTH was manifested by increased expression of not only pathogenesis-related (PR) genes but also WRKY and Jasmonate Zim-domain protein (JAZ) genes and increased jasmonic acid (JA) levels. The effect of BTH as a resistance inducer was observed early after application, while with Chol-BTH the plant defense system reacted more strongly after 8 days. The antioxidant properties of RI-treated tomatoes are related to both glutathione content and peroxidase activity. In the case of BTH, an increase in these activities occurred early after application, while in the case of Chol-BTH, the glutathione level was particularly high in the plant early after treatment, and high peroxidase activity was observed 8 days post-treatment. Overall, the collected results indicate that Chol-BTH, due to its physicochemical parameters (e.g., good solubility) and biological activity (increased expression of lignification-related genes, supported by increases in peroxidase activity and total phenolic compounds levels), can also be a very useful agent inducing tomato resistance against viral pathogens.
Assuntos
Líquidos Iônicos , Solanum lycopersicum , Antioxidantes , Glutationa , Ésteres , PeroxidasesRESUMO
The plant immunity system is being revisited more and more and new elements and roles are attributed to participating in the response to biotic stress. The new terminology is also applied in an attempt to identify different players in the whole scenario of immunity: Phytocytokines are one of those elements that are gaining more attention due to the characteristics of processing and perception, showing they are part of a big family of compounds that can amplify the immune response. This review aims to highlight the latest findings on the role of phytocytokines in the whole immune response to biotic stress, including basal and adaptive immunity, and expose the complexity of their action in plant perception and signaling events.
RESUMO
Citrus plants are a highly mycotrophic species with high levels of fungal colonization. Citrus aurantium rootstocks typically show abundant root colonization by Rhizophagus irregularis three weeks after inoculation. Mycorrhizal symbiosis protects plants against multiple biotic stressors, however, such protection against spider mites remains controversial. We examined mycorrhiza-induced resistance (MIR) in citrus against the two-spotted spider mite Tetranychus urticae. Mycorrhized C. aurantium displayed reduced levels of damage in leaves and lower mite oviposition rates, compared to non-mycorrhized controls. Mycorrhization did not affect host choice of mites in Y-tube assays; of note, C. aurantium has innate strong antixenotic resistance against this mite. Analysis of metabolism pathways in mycorrhized citrus plants showed upregulated expression of the oxylipin-related genes LOX-2 and PR-3 early after infestation. Accordingly, jasmonic acid (JA), 12-oxo phytodienoic acid (OPDA), and JA-Ile concentrations were increased by mycorrhization. Non-targeted metabolomic analysis revealed the amino acid, oxocarboxylic acid, and phenylpropanoid metabolism as the three major pathways with more hits at 24 h post infection (hpi) in mycorrhized plants. Interestingly, there was a transition to a priming profile of these pathways at 48 hpi following infestation. Three flavonoids (i.e., malic acid, coumaric acid, and diconiferyl alcohol) were among the priming compounds. A mixture containing all these compounds provided efficient protection against the mite. Unexpectedly, systemic resistance did not improve after 72 h of primary infestation, probably due to the innate strong systemic resistance of C. aurantium. This is the first study to show that MIR is functional against T. urticae in locally infested citrus leaves, which is mediated by a complex pool of secondary metabolites and is likely coordinated by priming of JA-dependent responses.
RESUMO
Arbuscular mycorrhizal symbiosis is restricted in roots, but it also improves shoot responses against leaf challenges, a phenomenon known as Mycorrhiza-Induced Resistance (MIR). This study focuses on mycorrhizal root signals that may orchestrate shoot defence responses. Metabolomic analysis of non-mycorrhizal and mycorrhizal plants upon Botrytis cinerea infection showed that roots rearrange their metabolome mostly in response to the symbiosis, whereas in shoots a stronger impact of the infection is observed. Specific clusters of compounds in shoots and roots display a priming profile suggesting an implication in the enhanced resistance observed in mycorrhizal plants. Among the primed pathways in roots, lignans showed the highest number of hits followed by oxocarboxylic acids, compounds of the amino acid metabolism, and phytohormones. The lignan yatein was present at higher concentrations in roots, root efflux and leaves of mycorrhizal plants This lignan displayed in vitro antimicrobial activity against B. cinerea and it was also functional protecting tomato plants. Besides, several JA defence-related genes were upregulated in mycorrhizal roots regardless of the pathogen infection, whereas PIN-II was primed in roots of mycorrhizal infected plants. These observations suggest that the enhanced resistance in shoots during MIR may be coordinated by lignans and oxylipins with the participation of roots.
Assuntos
Botrytis/fisiologia , Doenças das Plantas/microbiologia , Transdução de Sinais , Solanum lycopersicum/fisiologia , Solanum lycopersicum/genética , Micorrizas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Brotos de Planta/fisiologia , SimbioseRESUMO
Peptides are important regulators that participate in the modulation of almost every physiological event in plants, including defense. Recently, many of these peptides have been described as defense elicitors, termed phytocytokines, that are released upon pest or pathogen attack, triggering an amplification of plant defenses. However, little is known about peptides sensing and inducing resistance activities in heterologous plants. In the present study, exogenous peptides from solanaceous species, Systemins and HypSys, are sensed and induce resistance to the necrotrophic fungus Plectosphaerella cucumerina in the taxonomically distant species Arabidopsis thaliana. Surprisingly, other peptides from closer taxonomic clades have very little or no effect on plant protection. In vitro bioassays showed that the studied peptides do not have direct antifungal activities, suggesting that they protect the plant through the promotion of the plant immune system. Interestingly, tomato Systemin was able to induce resistance at very low concentrations (0.1 and 1 nM) and displays a maximum threshold being ineffective above at higher concentrations. Here, we show evidence of the possible involvement of the JA-signaling pathway in the Systemin-Induced Resistance (Sys-IR) in Arabidopsis. Additionally, Systemin treated plants display enhanced BAK1 and BIK1 gene expression following infection as well as increased production of ROS after PAMP treatment suggesting that Systemin sensitizes Arabidopsis perception to pathogens and PAMPs.
RESUMO
Mycorrhizal plants display enhanced resistance to several pathogens. However, the molecular mechanisms regulating mycorrhiza-induced resistance (MIR) are still elusive. We aim to study the mechanisms underlying MIR against Botrytis cinerea and the role of callose accumulation during this process. Mycorrhizal tomato plants inoculated with Rhizoglomus irregularis displayed callose priming upon B. cinerea infection. The callose inhibitor 2-deoxy-d-glucose abolished MIR, confirming the relevance of callose in the bioprotection phenomena. While studying the mechanisms underlying mycorrhiza-induced callose priming, we found that mycorrhizal plants display an enhanced starch degradation rate that is correlated with increased levels of ß-amylase1 transcripts following pathogen infection. Starch mobilization in mycorrhizal plants seems coordinated with the increased transcription of sugar transporter and invertase genes. Moreover, the expression levels of genes encoding the vesicular trafficking proteins ATL31 and SYP121 and callose synthase PMR4 were higher in the mycorrhizal plants and further boosted by subsequent pathogen infection. All these proteins play a key role in the priming of callose accumulation in Arabidopsis, suggesting that callose priming is an induced resistance mechanism conserved in different plant species. This evidence highlights the importance of sugar mobilization and vesicular trafficking in the priming of callose as a defence mechanism in mycorrhiza-induced resistance.
Assuntos
Micorrizas , Botrytis , Resistência à Doença , Glucanos , Doenças das PlantasRESUMO
Phytophthora cinnamomi (Pc) is a dangerous pathogen that causes root rot (ink disease) and threatens the production of chestnuts worldwide. Despite all the advances recently reported at molecular and physiological level, there are still gaps of knowledge that would help to unveil the defence mechanisms behind plant-Pc interactions. Bearing this in mind we quantified constitutive and Pc-induced stress-related signals (hormones and metabolites) complemented with changes in photosynthetic related parameters by exploring susceptible and resistant Castanea spp.-Pc interactions. In a greenhouse experiment, five days before and nine days after inoculation with Pc, leaves and fine roots from susceptible C. sativa and resistant C. sativa × C. crenata clonal 2-year-old plantlets were sampled (clones Cs14 and 111-1, respectively). In the resistant clone, stomatal conductance (gs) and net photosynthesis (A) decreased significantly and soluble sugars in leaves increased, while in the susceptible clone gs and A remained unchanged and proline levels in leaves increased. In the resistant clone, higher constitutive content of root SA and foliar ABA, JA and JA-Ile as compared to the susceptible clone were observed. Total phenolics and condensed tannins were highest in roots of the susceptible clone. In response to infection, a dynamic hormonal response in the resistant clone was observed, consisting of accumulation of JA, JA-Ile and ABA in roots and depletion of total phenolics in leaves. However, in the susceptible clone only JA diminished in leaves and increased in roots. Constitutive and Pc-induced levels of JA-Ile were only detectable in the resistant clone. From the hormonal profiles obtained in leaves and roots before and after infection, it is concluded that the lack of effective hormonal changes in C. sativa explains the lack of defence responses to Pc of this susceptible species.
Assuntos
Resistência à Doença , Fagaceae/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Phytophthora , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/fisiologia , Resistência à Doença/fisiologia , Fagaceae/imunologia , Fagaceae/microbiologia , Metaboloma/fisiologia , Phytophthora/fisiologia , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/fisiologia , Raízes de Plantas/fisiologiaRESUMO
A fast callose accumulation has been shown to mediate defence priming in certain plant-pathogen interactions, but the events upstream of callose assembly following chemical priming are poorly understood, mainly because those steps comprise sugar transfer to the infection site. ß-Amino butyric acid (BABA)-induced resistance in Arabidopsis against Plectosphaerella cucumerina is known to be mediated by callose priming. Indole-3-carboxylic acid (ICOOH, also known as I3CA) mediates BABA-induced resistance in Arabidopsis against P. cucumerina. This indolic compound is found in a common fingerprint of primed metabolites following treatments with various priming stimuli. In the present study, we show that I3CA induces resistance in Arabidopsis against P. cucumerina and primes enhancement of callose accumulation. I3CA treatment increased abscisic acid (ABA) levels before infection with P. cucumerina. An intact ABA synthesis pathway is needed to activate a starch amylase (BAM1) to trigger augmented callose deposition against P. cucumerina during I3CA-IR. To verify the relevance of the BAM1 amylase in I3CA-IR, knockdown mutants and overexpressors of the BAM1 gene were tested. The mutant bam1 was impaired to express I3CA-IR, but complemented 35S::BAM1-YFP lines in the background of bam1 restored an intact I3CA-IR and callose priming. Therefore, a more active starch metabolism is a committed step for I3CA-IR, inducing callose priming in adult plants. Additionally, I3CA treatments induced expression of the ubiquitin ligase ATL31 and syntaxin SYP131, suggesting that vesicular trafficking is relevant for callose priming. As a final element in the callose priming, an intact Powdery Mildew resistant4 (PMR4) gene is also essential to fully express I3CA-IR.
Assuntos
Arabidopsis/imunologia , Ascomicetos/fisiologia , Glucanos/metabolismo , Indóis/metabolismo , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/metabolismo , Amido/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Doenças das Plantas/microbiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismoRESUMO
BACKGROUND: Systemin has been extensively studied since it was discovered and is described as a peptidic hormone in tomato plants and other Solanaceae. Jasmonic acid and systemin are proposed to act through a positive feed-back loop with jasmonic acid, playing synergistic roles in response to both wounding and insect attack. Despite its biological relevance, most studies regarding the function of systemin in defence have been studied via PROSYSTEMIN (PROSYS) gene expression, which encodes the propeptide prosystemin that is later cleaved to systemin (SYS). Interestingly, hardly any studies have been based on quantification of the peptide. RESULTS: In this study, a simple and accurate method for systemin quantification was developed to understand its impact on plant metabolism. The basal levels of systemin were found to be extremely low. To study the role of endogenous systemin on plant metabolism, systemin was quantified in a transgenic line overexpressing the PROSYS gene (PS+) and in a silenced antisense line (PS-). We evaluated the relevance of systemin in plant metabolism by analysing the metabolomic profiles of both lines compared to wildtype plants through untargeted metabolomic profiling. Compounds within the lignan biosynthesis and tyrosine metabolism pathways strongly accumulated in PS+ compared to wild-type plants and to plants from the PS- line. The exogenous treatments with SYS enhanced accumulation of lignans, which confirms the role of SYS in cell wall reinforcement. Unexpectedly, PS+ plants displayed wild-type levels of jasmonic acid (JA) but elevated accumulation of 12-oxo-phytodienoic acid (OPDA), suggesting that PS+ should not be used as an over-accumulator of JA in experimental setups. CONCLUSIONS: A simple method, requiring notably little sample manipulation to quantify the peptide SYS, is described. Previous studies were based on genetic changes. In our study, SYS accumulated at extremely low levels in wild-type tomato leaves, showed slightly higher levels in the PROSYSTEMIN-overexpressing plants and was absent in the silenced lines. These small changes have a significant impact on plant metabolism. SA and OPDA, but not JA, were higher in the PROSYS-overexpressing plants.
RESUMO
Plants deploy distinct secondary metabolisms to cope with environment pressure and to face bio-aggressors notably through the production of biologically active alkaloids. This metabolism-type is particularly elaborated in Catharanthus roseus that synthesizes more than a hundred different monoterpene indole alkaloids (MIAs). While the characterization of their biosynthetic pathway now reaches completion, still little is known about the role of MIAs during biotic attacks. As a consequence, we developed a new plant/herbivore interaction system by challenging C. roseus leaves with Manduca sexta larvae. Transcriptomic and metabolic analyses demonstrated that C. roseus respond to folivory by both local and systemic processes relying on the activation of specific gene sets and biosynthesis of distinct MIAs following jasmonate production. While a huge local accumulation of strictosidine was monitored in attacked leaves that could repel caterpillars through its protein reticulation properties, newly developed leaves displayed an increased biosynthesis of the toxic strictosidine-derived MIAs, vindoline and catharanthine, produced by up-regulation of MIA biosynthetic genes. In this context, leaf consumption resulted in a rapid death of caterpillars that could be linked to the MIA dimerization observed in intestinal tracts. Furthermore, this study also highlights the overall transcriptomic control of the plant defense processes occurring during herbivory.
Assuntos
Catharanthus/imunologia , Catharanthus/metabolismo , Perfilação da Expressão Gênica , Herbivoria/fisiologia , Metabolômica , Folhas de Planta/genética , Folhas de Planta/metabolismo , Animais , Vias Biossintéticas/genética , Catharanthus/genética , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Alcaloides Indólicos/química , Alcaloides Indólicos/metabolismo , Larva/fisiologia , Manduca/fisiologia , Modelos Biológicos , Monoterpenos/química , Monoterpenos/metabolismo , Oxilipinas/metabolismo , Fotossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição GênicaRESUMO
Mycorrhizal plants are generally quite efficient in coping with environmental challenges. It has been shown that the symbiosis with arbuscular mycorrhizal fungi (AMF) can confer resistance against root and foliar pathogens, although the molecular mechanisms underlying such mycorrhiza-induced resistance (MIR) are poorly understood. Tomato plants colonized with the AMF Rhizophagus irregularis display enhanced resistance against the necrotrophic foliar pathogen Botrytis cinerea. Leaves from arbuscular mycorrhizal (AM) plants develop smaller necrotic lesions, mirrored also by a reduced levels of fungal biomass. A plethora of metabolic changes takes place in AMF colonized plants upon infection. Certain changes located in the oxylipin pathway indicate that several intermediaries are over-accumulated in the AM upon infection. AM plants react by accumulating higher levels of the vitamins folic acid and riboflavin, indolic derivatives and phenolic compounds such as ferulic acid and chlorogenic acid. Transcriptional analysis support the key role played by the LOX pathway in the shoots associated with MIR against B. cinerea. Interestingly, plants that have suffered a short period of nitrogen starvation appear to react by reprogramming their metabolic and genetic responses by prioritizing abiotic stress tolerance. Consequently, plants subjected to a transient nitrogen depletion become more susceptible to B. cinerea. Under these experimental conditions, MIR is severely affected although still functional. Many metabolic and transcriptional responses which are accumulated or activated by MIR such NRT2 transcript induction and OPDA and most Trp and indolic derivatives accumulation during MIR were repressed or reduced when tomato plants were depleted of N for 48 h prior infection. These results highlight the beneficial roles of AMF in crop protection by promoting induced resistance not only under optimal nutritional conditions but also buffering the susceptibility triggered by transient N depletion.
RESUMO
Disruption of the high-affinity nitrate transporter NRT2.1 activates the priming defense against Pseudomonas syringae, resulting in enhanced resistance. In this study, it is demonstrated that the high-affinity ammonium transporter AMT1.1 is a negative regulator of Arabidopsis defense responses. The T-DNA knockout mutant amt1.1 displays enhanced resistance against Plectosphaerella cucumerina and reduced susceptibility to P. syringae. The impairment of AMT1.1 induces significant metabolic changes in the absence of challenge, suggesting that amt1.1 retains constitutive defense responses. Interestingly, amt1.1 combats pathogens differently depending on the lifestyle of the pathogen. In addition, N starvation enhances the susceptibility of wild type plants and the mutant amt1.1 to P. syringae whereas it has no effect on P. cucumerina resistance. The metabolic changes of amt1.1 against P. syringae are subtler and are restricted to the phenylpropanoid pathway, which correlates with its reduced susceptibility. By contrast, the amt1.1 mutant responds by activating higher levels of camalexin and callose against P. cucumerina. In addition, amt1.1 shows altered levels of aliphatic and indolic glucosinolates and other Trp-related compounds following infection by the necrotroph. These observations indicate that AMT1.1 may play additional roles that affect N uptake and plant immune responses.
RESUMO
For salt tolerance to be achieved in the long-term plants must regulate Na(+)/K(+) homeostasis over time. In this study, we show that the salt tolerance induced by overexpression of the yeast HAL5 gene in tomato (Solanum lycopersicum) was related to a lower leaf Na(+) accumulation in the long term, by reducing Na(+) transport from root to shoot over time regardless of the severity of salt stress. Furthermore, maintaining Na(+)/K(+) homeostasis over time was associated with changes in the transcript levels of the Na(+) and K(+) transporters such as SlHKT1;2 and SlHAK5. The expression of SlHKT1;2 was upregulated in response to salinity in roots of transgenic plants but downregulated in the roots of wild-type (WT) plants, which seems to be related to the lower Na(+) transport rate from root to shoot in transgenic plants. The expression of the SlHAK5 increased in roots and leaves of both WT and transgenic plants under salinity. However, this increase was much higher in the leaves of transgenic plants than in those of WT plants, which may be associated with the ability of transgenic leaves to maintain Na(+)/K(+) homeostasis over time. Taken together, the results show that the salt tolerance mechanism induced by HAL5 overexpression in tomato is related to the appropriate regulation of ion transport from root to shoot and maintenance of the leaf Na(+)/K(+) homeostasis through modulation of SlHKT1 and SlHAK5 over time.
Assuntos
Adaptação Fisiológica , Regulação da Expressão Gênica de Plantas , Proteínas Quinases/genética , Proteínas de Saccharomyces cerevisiae/genética , Cloreto de Sódio/farmacologia , Solanum lycopersicum/fisiologia , Frutas/genética , Frutas/fisiologia , Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Transporte de Íons , Solanum lycopersicum/genética , Folhas de Planta/genética , Folhas de Planta/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Brotos de Planta/genética , Brotos de Planta/fisiologia , Plantas Geneticamente Modificadas , Potássio/metabolismo , Proteínas Quinases/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Salinidade , Tolerância ao Sal , Sódio/metabolismo , Transgenes , Xilema/genética , Xilema/fisiologiaRESUMO
In order to advance in the understanding of CI in pepper fruits, the cell ultrastructure alterations induced by CI and the physiological and metabolic changes have been studied along with the proteomic study. When stored at low temperatures bell pepper (Capsicum annuum) fruits exhibited visual CI symptoms and important alterations within the cell ultrastructure, since peroxisomes and starch grains were not detected and the structure of the chloroplast was seriously damaged in chilled tissues. Physiological and metabolic disorders were also observed in chilled fruits, such as higher ethylene production, increased MDA content, changes in sugar and organic acids and enzymatic activities. The comparative proteomic analysis between control and chilled fruits reveals that the main alterations induced by CI in bell pepper fruits are linked to redox homeostasis and carbohydrate metabolism. Thus, protein abundance in the ascorbate-glutathione cycle is altered and catalase is down-regulated. Key proteins from glycolysis, Calvin cycle and Krebs cycle are also inhibited in chilled fruits. Enolase and GAPDH are revealed as proteins that may play a key role in the development of chilling injury. This study also provides the first evidence at the protein level that cytosolic MDH is involved in abiotic stress.
Assuntos
Capsicum , Temperatura Baixa/efeitos adversos , Proteoma/análise , Capsicum/química , Capsicum/metabolismo , Capsicum/ultraestrutura , Compreensão/fisiologia , Eletroforese em Gel Bidimensional , Frutas/química , Frutas/metabolismo , Microscopia Eletrônica de Transmissão , Modelos Biológicos , Doenças das Plantas/etiologia , Proteínas de Plantas/análise , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Proteômica , Estresse Fisiológico/fisiologiaRESUMO
One strategy to increase the level of drought and salinity tolerance is the transfer of genes codifying different types of proteins functionally related to macromolecules protection, such as group 2 of late embryogenesis abundant (LEA) proteins or dehydrins. The TAS14 dehydrin was isolated and characterized in tomato and its expression was induced by osmotic stress (NaCl and mannitol) and abscisic acid (ABA) [Godoy et al., Plant Mol Biol 1994;26:1921-1934], yet its function in drought and salinity tolerance of tomato remains elusive. In this study, transgenic tomato plants overexpressing tas14 gene under the control of the 35SCaMV promoter were generated to assess the function of tas14 gene in drought and salinity tolerance. The plants overexpressing tas14 gene achieved improved long-term drought and salinity tolerance without affecting plant growth under non-stress conditions. A mechanism of osmotic stress tolerance via osmotic potential reduction and solutes accumulation, such as sugars and K(+) is operating in tas14 overexpressing plants in drought conditions. A similar mechanism of osmotic stress tolerance was observed under salinity. Moreover, the overexpression of tas14 gene increased Na(+) accumulation only in adult leaves, whereas in young leaves, the accumulated solutes were K(+) and sugars, suggesting that plants overexpressing tas14 gene are able to distribute the Na(+) accumulation between young and adult leaves over a prolonged period in stressful conditions. Measurement of ABA showed that the action mechanism of tas14 gene is associated with an earlier and greater accumulation of ABA in leaves during short-term periods. A good feature for the application of this gene in improving drought and salt stress tolerance is the fact that its constitutive expression does not affect plant growth under non-stress conditions, and tolerance induced by overexpression of tas14 gene was observed at the different stress degrees applied to the long term.
Assuntos
Adaptação Fisiológica/genética , Secas , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Cloreto de Sódio/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Solanum lycopersicum/crescimento & desenvolvimento , Pressão Osmótica/fisiologia , Reguladores de Crescimento de Plantas/farmacologia , Plantas Geneticamente Modificadas , Salinidade , Tolerância ao Sal/genética , Estresse Fisiológico/genéticaRESUMO
A comparative proteomic analysis between tomato fruits stored at chilling and non-chilling temperatures was carried out just before the appearance of visible symptoms of chilling injury. At this stage of the stress period it was possible to discriminate between proteins involved in symptoms and proteins implicated in response. To investigate the changes in the tomato fruit proteome under this specific stressful condition, two-dimensional differential in-gel electrophoresis coupled with spot identification by mass spectrometry was applied. This proteomic approach allowed the identification of differentially expressed proteins which are involved in two main biological functions: (i) defensive mechanisms represented by small heat shock and late embryogenesis proteins; and (ii) reaction to the uncoupling of photosynthetic processes and the protein degradation machinery. One of the first changes observed in chilled fruits is the down-regulation of ATP synthase, 26S proteasome subunit RPN11 and aspartic proteinase, whereas the first responses in order to deal with the stress are mainly multifunctional proteins involved not only in metabolism but also in stress regulation such as glyceraldehyde phosphate dehydrogenase, 2-oxoglutarate dehydrogenase and invertase. In addition, our data seem to indicate a possible candidate to be used as a protein marker for further studies on cold stress: aldose-1-epimerase, which seems to have an important role in low temperature tolerance.
Assuntos
Temperatura Baixa , Frutas/metabolismo , Fotossíntese , Proteoma/metabolismo , Solanum lycopersicum/metabolismo , Eletroforese em Gel Bidimensional , Armazenamento de Alimentos , Frutas/genética , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Proteínas de Plantas/metabolismo , Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Estresse FisiológicoRESUMO
BACKGROUND: Apricots (Prunus armeniaca cv. Búlida) were treated with 1 µL L⻹ [corrected] 1-methylcyclopropene (1-MCP) immediately after harvest and stored in air at 2 degrees C for 21 days. Antioxidant levels (ascorbic acid and carotenoids), enzymatic antioxidant activities (superoxide dismutase (SOD) and unspecific peroxidase (POX)) and total antioxidant capacity (trolox equivalent antioxidant capacity (TEAC)) were determined. The level of oxidative stress was also established by measuring ion leakage during storage. The changes in the antioxidant potential of apricots were related to the capacity of 1-MCP to increase their commercial life. RESULTS: 1-MCP-treated fruits exhibited higher SOD activity, whereas POX activity was significantly higher only after 21 days at 2 degrees C. Treated fruits also exhibited better retention of ascorbate and carotenoids and higher TEAC during storage. In accordance with these observations, lower ion leakage values were detected in 1-MCP-treated apricots. CONCLUSION: Taken together, these results suggest that 1-MCP conferred a greater resistance to oxidative stress. This, along with the reduction in ethylene production, could contribute to the increase in commercial life and nutritional value observed in 1-MCP-treated apricots.