Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
One Health ; 18: 100744, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38725960

RESUMO

The emergence of SARS-CoV-2 in 2019 and its rapid spread throughout the world has caused the largest pandemic of our modern era. The zoonotic origin of this pathogen highlights the importance of the One Health concept and the need for a coordinated response to this kind of threats. Since its emergence, the virus has caused >7 million deaths worldwide. However, the animal source for human outbreaks remains unknown. The ability of the virus to jump between hosts is facilitated by the presence of the virus receptor, the highly conserved angiotensin-converting enzyme 2 (ACE2), found in various mammals. Positivity for SARS-CoV-2 has been reported in various species, including domestic animals and livestock, but their potential role in bridging viral transmission to humans is still unknown. Additionally, the virus has evolved over the pandemic, resulting in variants with different impacts on human health. Therefore, suitable animal models are crucial to evaluate the susceptibility of different mammalian species to this pathogen and the adaptability of different variants. In this work, we established a transgenic mouse model that expresses the feline ACE2 protein receptor (cACE2) under the human cytokeratin 18 (K18) gene promoter's control, enabling high expression in epithelial cells, which the virus targets. Using this model, we assessed the susceptibility, pathogenicity, and transmission of SARS-CoV-2 variants. Our results show that the sole expression of the cACE2 receptor in these mice makes them susceptible to SARS-CoV-2 variants from the initial pandemic wave but does not enhance susceptibility to omicron variants. Furthermore, we demonstrated efficient contact transmission of SARS-CoV-2 between transgenic mice that express either the feline or the human ACE2 receptor.

3.
Vaccines (Basel) ; 12(4)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38675825

RESUMO

Candidate vaccines against African swine fever virus (ASFV) based on naturally attenuated or genetically modified viruses have the potential to generate protective immune responses, although there is no consensus on what defines a protective immune response against ASFV. Studies, especially in sensitive host species and focused on unravelling protective mechanisms, will contribute to the development of safer and more effective vaccines. The present study provides a detailed analysis of phenotypic and functional data on cellular responses induced by intradermal immunization and subsequent boosting of domestic pigs with the naturally attenuated field strain Lv17/WB/Rie1, as well as the mechanisms underlying protection against intramuscular challenge with the virulent genotype II Armenia/07 strain. The transient increase in IL-8 and IL-10 in serum observed after immunization might be correlated with survival. Protection was also associated with a robust ASFV-specific polyfunctional memory T-cell response, where CD4CD8 and CD8 T cells were identified as the main cellular sources of virus-specific IFNγ and TNFα. In parallel with the cytokine response, these T-cell subsets also showed specific cytotoxic activity as evidenced by the increased expression of the CD107a degranulation marker. Along with virus-specific multifunctional CD4CD8 and CD8 T-cell responses, the increased levels of antigen experienced in cytotoxic CD4 T cells observed after the challenge in immunized pigs might also contribute to controlling virulent infection by killing mechanisms targeting infected antigen-presenting cells. Future studies should elucidate whether the memory T-cell responses evidenced in the present study persist and provide long-term protection against further ASFV infections.

4.
NPJ Vaccines ; 9(1): 53, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448450

RESUMO

Vaccines based on mRNA technology have revolutionized the field. In fact, lipid nanoparticles (LNP) formulated with mRNA are the preferential vaccine platform used in the fight against SARS-CoV-2 infection, with wider application against other diseases. The high demand and property right protection of the most potent cationic/ionizable lipids used for LNP formulation of COVID-19 mRNA vaccines have promoted the design of alternative nanocarriers for nucleic acid delivery. In this study we have evaluated the immunogenicity and efficacy of different rationally designed lipid and polymeric-based nanoparticle prototypes against SARS-CoV-2 infection. An mRNA coding for a trimeric soluble form of the receptor binding domain (RBD) of the spike (S) protein from SARS-CoV-2 was encapsulated using different components to form nanoemulsions (NE), nanocapsules (NC) and lipid nanoparticles (LNP). The toxicity and biological activity of these prototypes were evaluated in cultured cells after transfection and in mice following homologous prime/boost immunization. Our findings reveal good levels of RBD protein expression with most of the formulations. In C57BL/6 mice immunized intramuscularly with two doses of formulated RBD-mRNA, the modified lipid nanoparticle (mLNP) and the classical lipid nanoparticle (LNP-1) were the most effective delivery nanocarriers at inducing binding and neutralizing antibodies against SARS-CoV-2. Both prototypes fully protected susceptible K18-hACE2 transgenic mice from morbidity and mortality following a SARS-CoV-2 challenge. These results highlight that modulation of mRNAs immunogenicity can be achieved by using alternative nanocarriers and support further assessment of mLNP and LNP-1 prototypes as delivery vehicles for mRNA vaccines.

5.
Viruses ; 16(1)2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38257787

RESUMO

The introduction of three single nucleotide mutations into the genome of the virulent RVFV ZH548 strain allows for the rescue of a fully attenuated virus in mice (ZH548-rA2). These mutations are located in the viral genes encoding the RdRp and the non-structural protein NSs. This paper shows the results obtained after the subcutaneous inoculation of ZH548-rA2 in adult sheep and the subsequent challenge with the parental virus (ZH548-rC1). Inoculation with the ZH548-rA2 virus caused no detectable clinical or pathological effect in sheep, whereas inoculation of the parental rC1 virus caused lesions compatible with viral infection characterised by the presence of scattered hepatic necrosis. Viral infection was confirmed via immunohistochemistry, with hepatocytes within the necrotic foci appearing as the main cells immunolabelled against viral antigen. Furthermore, the inoculation of sheep with the rA2 virus prevented the liver damage expected after rC1 virus inoculation, suggesting a protective efficacy in sheep which correlated with the induction of both humoral and cell-mediated immune responses.


Assuntos
Vírus da Febre do Vale do Rift , Viroses , Animais , Camundongos , Ovinos , Vírus da Febre do Vale do Rift/genética , Antígenos Virais , Genes Virais , Hepatócitos
6.
Front Vet Sci ; 10: 1306320, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38155760

RESUMO

Intrapancreatic accessory spleen (IPAS) is one of the most frequent congenital splenic anomalies in humans; however, studies in veterinary medicine are scarce. This study aimed to describe the macroscopic, histopathological and immunohistochemical features of 11 suspected cases of IPAS in wild boar piglets of 3-4 months old. Seven of the 11 animals were immunised with a low virulence isolate of African swine fever virus (ASFV) and subsequently challenged with a highly virulent ASFV isolate (LVI-HVI group). The remaining four animals were exclusively infected with a highly virulent isolate of ASFV (HVI group). Grossly, lesions comprised focal or multifocal reddish areas of variable shape, located on the surface of the pancreatic tail or within the parenchyma. Histological and immunohistochemical studies (anti-CD79 and CD3) confirmed the presence of IPAS in eight of the 11 cases. IPAS shared the same histological structure and alterations as those observed in the original spleen. The immunohistochemical study against ASFV revealed the presence of VP72+ cells in both the spleen and IPAS of seven of the eight piglets. The results of this study describe for the first time the presence of IPAS in ASFV infection of wild boar (Sus scrofa) regardless the isolate and suggest that the infection may induce the development of ectopic splenic tissue due to an increased demand for phagocytic cells from the reticuloendothelial system. However, further studies are needed to understand the immunological mechanisms that trigger the formation of these accessory organs.

7.
Front Immunol ; 14: 1264323, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38155964

RESUMO

The constant appearance of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VoCs) has jeopardized the protective capacity of approved vaccines against coronavirus disease-19 (COVID-19). For this reason, the generation of new vaccine candidates adapted to the emerging VoCs is of special importance. Here, we developed an optimized COVID-19 vaccine candidate using the modified vaccinia virus Ankara (MVA) vector to express a full-length prefusion-stabilized SARS-CoV-2 spike (S) protein, containing 3 proline (3P) substitutions in the S protein derived from the beta (B.1.351) variant, termed MVA-S(3Pbeta). Preclinical evaluation of MVA-S(3Pbeta) in head-to-head comparison to the previously generated MVA-S(3P) vaccine candidate, expressing a full-length prefusion-stabilized Wuhan S protein (with also 3P substitutions), demonstrated that two intramuscular doses of both vaccine candidates fully protected transgenic K18-hACE2 mice from a lethal challenge with SARS-CoV-2 beta variant, reducing mRNA and infectious viral loads in the lungs and in bronchoalveolar lavages, decreasing lung histopathological lesions and levels of proinflammatory cytokines in the lungs. Vaccination also elicited high titers of anti-S Th1-biased IgGs and neutralizing antibodies against ancestral SARS-CoV-2 Wuhan strain and VoCs alpha, beta, gamma, delta, and omicron. In addition, similar systemic and local SARS-CoV-2 S-specific CD4+ and CD8+ T-cell immune responses were elicited by both vaccine candidates after a single intranasal immunization in C57BL/6 mice. These preclinical data support clinical evaluation of MVA-S(3Pbeta) and MVA-S(3P), to explore whether they can diversify and potentially increase recognition and protection of SARS-CoV-2 VoCs.


Assuntos
COVID-19 , Vacinas , Camundongos , Animais , Humanos , SARS-CoV-2/genética , Vaccinia virus/genética , Vacinas contra COVID-19 , Anticorpos Antivirais , COVID-19/prevenção & controle , Camundongos Endogâmicos C57BL
8.
Biomed Pharmacother ; 169: 115882, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37984300

RESUMO

An archetypal anti-inflammatory compound against cytokine storm would inhibit it without suppressing the innate immune response. AG5, an anti-inflammatory compound, has been developed as synthetic derivative of andrographolide, which is highly absorbable and presents low toxicity. We found that the mechanism of action of AG5 is through the inhibition of caspase-1. Interestingly, we show with in vitro generated human monocyte derived dendritic cells that AG5 preserves innate immune response. AG5 minimizes inflammatory response in a mouse model of lipopolysaccharide (LPS)-induced lung injury and exhibits in vivo anti-inflammatory efficacy in the SARS-CoV-2-infected mouse model. AG5 opens up a new class of anti-inflammatories, since contrary to NSAIDs, AG5 is able to inhibit the cytokine storm, like dexamethasone, but, unlike corticosteroids, preserves adequately the innate immunity. This is critical at the early stages of any naïve infection, but particularly in SARS-CoV-2 infections. Furthermore, AG5 showed interesting antiviral activity against SARS-CoV-2 in humanized mice.


Assuntos
COVID-19 , Síndrome da Liberação de Citocina , Humanos , Camundongos , Animais , Imunidade Inata , SARS-CoV-2 , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico
9.
Front Immunol ; 14: 1160065, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37404819

RESUMO

Introduction: While there has been considerable progress in the development of vaccines against SARS-CoV-2, largely based on the S (spike) protein of the virus, less progress has been made with vaccines delivering different viral antigens with cross-reactive potential. Methods: In an effort to develop an immunogen with the capacity to induce broad antigen presentation, we have designed a multi-patch synthetic candidate containing dominant and persistent B cell epitopes from conserved regions of SARS-CoV-2 structural proteins associated with long-term immunity, termed CoV2-BMEP. Here we describe the characterization, immunogenicity and efficacy of CoV2-BMEP using two delivery platforms: nucleic acid DNA and attenuated modified vaccinia virus Ankara (MVA). Results: In cultured cells, both vectors produced a main protein of about 37 kDa as well as heterogeneous proteins with size ranging between 25-37 kDa. In C57BL/6 mice, both homologous and heterologous prime/boost combination of vectors induced the activation of SARS-CoV-2-specific CD4 and CD8 T cell responses, with a more balanced CD8+ T cell response detected in lungs. The homologous MVA/MVA immunization regimen elicited the highest specific CD8+ T cell responses in spleen and detectable binding antibodies (bAbs) to S and N antigens of SARS-CoV-2. In SARS-CoV-2 susceptible k18-hACE2 Tg mice, two doses of MVA-CoV2-BMEP elicited S- and N-specific bAbs as well as cross-neutralizing antibodies against different variants of concern (VoC). After SARS-CoV-2 challenge, all animals in the control unvaccinated group succumbed to the infection while vaccinated animals with high titers of neutralizing antibodies were fully protected against mortality, correlating with a reduction of virus infection in the lungs and inhibition of the cytokine storm. Discussion: These findings revealed a novel immunogen with the capacity to control SARS-CoV-2 infection, using a broader antigen presentation mechanism than the approved vaccines based solely on the S antigen.


Assuntos
COVID-19 , Vacinas Virais , Humanos , Animais , Camundongos , Vacinas contra COVID-19 , Vetores Genéticos , SARS-CoV-2 , COVID-19/prevenção & controle , Camundongos Endogâmicos C57BL , Vaccinia virus/genética
10.
Viruses ; 15(1)2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-36680273

RESUMO

African swine fever (ASF) is a hemorrhagic viral disease of domestic pigs and wild suids (all Sus scrofa) caused by the ASF virus (ASFV). The disease is spreading worldwide without control, threatening pig production due to the absence of licensed vaccine or commercially available treatments. A thorough understanding of the immunopathogenic mechanisms behind ASFV infection is required to better fight the disease. Cytokines are small, non-structural proteins, which play a crucial role in many aspects of the immune responses to viruses, including ASFV. Infection with virulent ASFV isolates often results in exacerbated immune responses, with increased levels of serum pro-inflammatory interleukins (IL-1α, IL-1ß, IL-6), TNF and chemokines (CCL2, CCL5, CXCL10). Increased levels of IL-1, IL-6 and TNF are often detected in several tissues during acute ASFV infections and associated with lymphoid depletion, hemorrhages and oedemas. IL-1Ra is frequently released during ASFV infection to block further IL-1 activity, with its implication in ASFV immunopathology having been suggested. Increased levels of IFN-α and of the anti-inflammatory IL-10 seem to be negatively correlated with animal survival, whereas some correlation between virus-specific IFN-γ-producing cells and protection has been suggested in different studies where different vaccine candidates were tested, although future works should elucidate whether IFN-γ release by specific cell types is related to protection or disease development.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Citocinas/metabolismo , Interleucina-6/metabolismo , Interleucina-1/metabolismo , Sus scrofa
11.
Front Immunol ; 13: 1023255, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439169

RESUMO

SARS-CoV-2 vaccines currently in use have contributed to controlling the COVID-19 pandemic. Notwithstanding, the high mutation rate, fundamentally in the spike glycoprotein (S), is causing the emergence of new variants. Solely utilizing this antigen is a drawback that may reduce the efficacy of these vaccines. Herein we present a DNA vaccine candidate that contains the genes encoding the S and the nucleocapsid (N) proteins implemented into the non-replicative mammalian expression plasmid vector, pPAL. This plasmid lacks antibiotic resistance genes and contains an alternative selectable marker for production. The S gene sequence was modified to avoid furin cleavage (Sfs). Potent humoral and cellular immune responses were observed in C57BL/6J mice vaccinated with pPAL-Sfs + pPAL-N following a prime/boost regimen by the intramuscular route applying in vivo electroporation. The immunogen fully protected K18-hACE2 mice against a lethal dose (105 PFU) of SARS-CoV-2. Viral replication was completely controlled in the lungs, brain, and heart of vaccinated mice. Therefore, pPAL-Sfs + pPAL-N is a promising DNA vaccine candidate for protection from COVID-19.


Assuntos
COVID-19 , Vacinas de DNA , Vacinas Virais , Camundongos , Animais , Humanos , SARS-CoV-2 , Vacinas contra COVID-19 , Pandemias , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , COVID-19/prevenção & controle , Antibacterianos , Mamíferos
12.
Front Immunol ; 13: 995235, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172368

RESUMO

Current coronavirus disease-19 (COVID-19) vaccines are administered by the intramuscular route, but this vaccine administration failed to prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus infection in the upper respiratory tract, mainly due to the absence of virus-specific mucosal immune responses. It is hypothesized that intranasal (IN) vaccination could induce both mucosal and systemic immune responses that blocked SARS-CoV-2 transmission and COVID-19 progression. Here, we evaluated in mice IN administration of three modified vaccinia virus Ankara (MVA)-based vaccine candidates expressing the SARS-CoV-2 spike (S) protein, either the full-length native S or a prefusion-stabilized [S(3P)] protein; SARS-CoV-2-specific immune responses and efficacy were determined after a single IN vaccine application. Results showed that in C57BL/6 mice, MVA-based vaccine candidates elicited S-specific IgG and IgA antibodies in serum and bronchoalveolar lavages, respectively, and neutralizing antibodies against parental and SARS-CoV-2 variants of concern (VoC), with MVA-S(3P) being the most immunogenic vaccine candidate. IN vaccine administration also induced polyfunctional S-specific Th1-skewed CD4+ and cytotoxic CD8+ T-cell immune responses locally (in lungs and bronchoalveolar lymph nodes) or systemically (in spleen). Remarkably, a single IN vaccine dose protected susceptible K18-hACE2 transgenic mice from morbidity and mortality caused by SARS-CoV-2 infection, with MVA-S(3P) being the most effective candidate. Infectious SARS-CoV-2 viruses were undetectable in lungs and nasal washes, correlating with high titers of S-specific IgGs and neutralizing antibodies against parental SARS-CoV-2 and several VoC. Moreover, low histopathological lung lesions and low levels of pro-inflammatory cytokines in lungs and nasal washes were detected in vaccinated animals. These results demonstrated that a single IN inoculation of our MVA-based vaccine candidates induced potent immune responses, either locally or systemically, and protected animal models from COVID-19. These results also identified an effective vaccine administration route to induce mucosal immunity that should prevent SARS-CoV-2 host-to-host transmission.


Assuntos
COVID-19 , Vacinas Virais , Administração Intranasal , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Formação de Anticorpos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Citocinas , Imunoglobulina A , Imunoglobulina G , Camundongos , Camundongos Endogâmicos C57BL , SARS-CoV-2 , Vaccinia virus/genética
13.
Methods Mol Biol ; 2503: 15-49, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35575884

RESUMO

Pathology complements and provides a fundamental link to other disciplines for disease investigations supporting molecular biology, genetics, immunology, or virology as core basis of scientific research. Necropsies are an essential tool in veterinary pathology for disease investigation and should be conducted in a routine, systematic, and standard approach. An orderly necropsy procedure will allow the prosector (veterinary clinicians or veterinary pathologists) to determine macroscopically normal or altered structures and allow, through experience, to acquire dexterity, speed, and confidence in the technique. In conjunction with standardized macroscopic scoring protocols, necropsy is a powerful tool especially when using experimental animal models in research. Here, we describe a systematic necropsy protocol to be conducted on pigs infected with African swine fever virus (ASFV). The methodology described only requires rudimentary instruments, and it is not time-consuming. In addition to performing accurate tissue and organ assessment, the technique intends the prosector to carry out sampling of organs and tissues of interest in ASFV-infected pigs.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Febre Suína Africana/diagnóstico , Animais , Suínos
14.
NPJ Vaccines ; 7(1): 17, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35140227

RESUMO

Two doses of the MVA-CoV2-S vaccine candidate expressing the SARS-CoV-2 spike (S) protein protected K18-hACE2 transgenic mice from a lethal dose of SARS-CoV-2. This vaccination regimen prevented virus replication in the lungs, reduced lung pathology, and diminished levels of pro-inflammatory cytokines. High titers of IgG antibodies against S and receptor-binding domain (RBD) proteins and of neutralizing antibodies were induced against parental virus and variants of concern, markers that correlated with protection. Similar SARS-CoV-2-specific antibody responses were observed at prechallenge and postchallenge in the two-dose regimen, while the single-dose treatment does not avoid vaccine breakthrough infection. All vaccinated animals survived infection and were also protected to SARS-CoV-2 reinfection. Furthermore, two MVA-CoV2-S doses induced long-term memory S-specific humoral and cellular immune responses in C57BL/6 mice, 6 months after immunization. The efficacy and immunological benefits of the MVA-CoV2-S vaccine candidate against COVID-19 supports its consideration for human clinical trials.

15.
J Virol ; 96(6): e0189921, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35044212

RESUMO

African swine fever virus multigene family (MGF) 360 and 505 genes have roles in suppressing the type I interferon response and in virulence in pigs. The role of the individual genes is poorly understood. Different combinations of these genes were deleted from the virulent genotype II Georgia 2007/1 isolate. Deletion of five copies of MGF 360 genes, MGF360-10L, -11L, -12L, -13L, and -14L, and three copies of MGF505-1R, -2R, and -3R reduced virus replication in macrophages and attenuated virus in pigs. However, only 25% of the immunized pigs were protected against challenge. Deletion of MGF360-12L, -13L, and -14L and MGF505-1R in combination with a negative serology marker, K145R (GeorgiaΔK145RΔMGF(A)), reduced virus replication in macrophages and virulence in pigs, since no clinical signs or virus genome in blood were observed following immunization. Four of six pigs were protected after challenge. In contrast, deletion of MGF360-13L and -14L, MGF505-2R and -3R, and K145R (GeorgiaΔK145RΔMGF(B)) did not reduce virus replication in macrophages. Following immunization of pigs, clinical signs were delayed, but all pigs reached the humane endpoint. Deletion of genes MGF360-12L, MGF505-1R, and K145R reduced replication in macrophages and attenuated virulence in pigs since no clinical signs or virus genome in blood were observed following immunization. Thus, the deletion of MGF360-12L and MGF505-1R, in combination with K145R, was sufficient to dramatically attenuate virus infection in pigs. However, only two of six pigs were protected, suggesting that deletion of additional MGF genes is required to induce a protective immune response. Deletion of MGF360-12L, but not MGF505-1R, from the GeorgiaΔK145R virus reduced virus replication in macrophages, indicating that MGF360-12L was most critical for maintaining high levels of virus replication in macrophages. IMPORTANCE African swine fever has a high socioeconomic impact and no vaccines to aid control. The African swine fever virus (ASFV) has many genes that inhibit the host's interferon response. These include related genes that are grouped into multigene families, including MGF360 and 505. Here, we investigated which MGF360 and 505 genes were most important for viral attenuation and protection against genotype II strains circulating in Europe and Asia. We compared viruses with deletions of MGF genes. Deletion of just two MGF genes in combination with a third gene, K145R, a possible marker for vaccination, is sufficient for virus attenuation in pigs. Deletion of additional MGF360 genes was required to induce higher levels of protection. Furthermore, we showed that the deletion of MGF360-12L, combined with K145R, impairs virus replication in macrophages in culture. Our results have important implications for understanding the roles of the ASFV MGF genes and for vaccine development.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Proteínas Virais , Vacinas Virais , Virulência , Replicação Viral , Febre Suína Africana/prevenção & controle , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/imunologia , Animais , Deleção de Genes , Genótipo , Macrófagos/virologia , Família Multigênica/genética , Suínos , Proteínas Virais/genética , Proteínas Virais/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia , Virulência/genética , Replicação Viral/genética
16.
J Virol ; 96(1): e0134021, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34643433

RESUMO

The limited knowledge on the role of many of the approximately 170 proteins encoded by African swine fever virus restricts progress toward vaccine development. Previously, the DP148R gene was deleted from the genome of genotype I virulent Benin 97/1 isolate. This virus, BeninΔDP148R, induced transient moderate clinical signs after immunization and high levels of protection against challenge. However, the BeninΔDP148R virus and genome persisted in blood over a prolonged period. In the current study, deletion of either EP402R or EP153R genes individually or in combination from BeninΔDP148R genome was shown not to reduce virus replication in macrophages in vitro. However, deletion of EP402R dramatically reduced the period of infectious virus persistence in blood in immunized pigs from 28 to 14 days and virus genome from 59 to 14 days while maintaining high levels of protection against challenge. The additional deletion of EP153R (BeninΔDP148RΔEP153RΔEP402R) further attenuated the virus, and no viremia or clinical signs were observed postimmunization. This was associated with decreased protection and detection of moderate levels of challenge virus in blood. Interestingly, the deletion of EP153R alone from BeninΔDP148R did not result in further virus attenuation and did not reduce the period of virus persistence in blood. These results show that EP402R and EP153R have a synergistic role in reducing clinical signs and levels of virus in blood. IMPORTANCE African swine fever virus (ASFV) causes a disease of domestic pigs and wild boar which results in death of almost all infected animals. The disease has a high economic impact, and no vaccine is available. We investigated the role of two ASFV proteins, called EP402R and EP153R, in determining the levels and length of time virus persists in blood from infected pigs. EP402R causes ASFV particles and infected cells to bind to red blood cells. Deletion of the EP402R gene dramatically reduced virus persistence in blood but did not reduce the level of virus. Deletion of the EP153R gene alone did not reduce the period or level of virus persistence in blood. However, deleting both EP153R and EP402R resulted in undetectable levels of virus in blood and no clinical signs showing that the proteins act synergistically. Importantly, the infected pigs were protected following infection with the wild-type virus that kills pigs.


Assuntos
Vírus da Febre Suína Africana/fisiologia , Febre Suína Africana/virologia , Proteínas Virais/metabolismo , Viremia/virologia , Febre Suína Africana/imunologia , Febre Suína Africana/metabolismo , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Antígenos Virais/genética , Antígenos Virais/imunologia , Antígenos Virais/metabolismo , Biomarcadores , Células Cultivadas , Engenharia Genética , Genótipo , Interações Hospedeiro-Patógeno , Imunização , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/virologia , Deleção de Sequência , Suínos , Proteínas Virais/genética , Proteínas Virais/imunologia , Vacinas Virais/imunologia , Virulência , Replicação Viral
17.
Pathogens ; 10(6)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207265

RESUMO

The understanding of the pathogenic mechanisms and the clinicopathological forms caused by currently circulating African swine fever virus (ASFV) isolates is incomplete. So far, most of the studies have been focused on isolates classified within genotypes I and II, the only genotypes that have circulated outside of Africa. However, less is known about the clinical presentations and lesions induced by isolates belonging to the other twenty-two genotypes. Therefore, the early clinicopathological identification of disease outbreaks caused by isolates belonging to, as yet, not well-characterised ASFV genotypes may be compromised, which might cause a delay in the implementation of control measures to halt the virus spread. To improve the pathological characterisation of disease caused by diverse isolates, we have refined the macroscopic and histopathological evaluation protocols to standardise the scoring of lesions. Domestic pigs were inoculated intranasally with different doses (high, medium and low) of ASFV isolate Ken05/Tk1 (genotype X). To complement previous studies, the distribution and severity of macroscopic and histopathological lesions, along with the amount and distribution of viral antigen in tissues, were characterised by applying the new scoring protocols. The intranasal inoculation of domestic pigs with high doses of the Ken05/Tk1 isolate induced acute forms of ASF in most of the animals. Inoculation with medium doses mainly induced acute forms of disease. A less severe but longer clinical course, typical of subacute forms, characterised by the presence of more widespread and severe haemorrhages and oedema, was observed in one pig inoculated with the medium dose. The severity of vascular lesions (haemorrhages and oedema) induced by high and medium doses was not associated with the amount of virus antigen detected in tissues, therefore these might be attributed to indirect mechanisms not evaluated in the present study. The absence of clinical signs, lesions and detectable levels of virus genome or antigen in blood from the animals inoculated with the lowest dose ruled out the existence of possible asymptomatic carriers or persistently infected pigs, at least for the 21 days period of the study. The results corroborate the moderate virulence of the Ken05/Tk1 isolate, as well as its capacity to induce both the acute and, occasionally, subacute forms of ASF when high and medium doses were administered intranasally.

18.
Front Immunol ; 12: 824728, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35154086

RESUMO

We generated an optimized COVID-19 vaccine candidate based on the modified vaccinia virus Ankara (MVA) vector expressing a full-length prefusion-stabilized SARS-CoV-2 spike (S) protein, termed MVA-CoV2-S(3P). The S(3P) protein was expressed at higher levels (2-fold) than the non-stabilized S in cells infected with the corresponding recombinant MVA viruses. One single dose of MVA-CoV2-S(3P) induced higher IgG and neutralizing antibody titers against parental SARS-CoV-2 and variants of concern than MVA-CoV2-S in wild-type C57BL/6 and in transgenic K18-hACE2 mice. In immunized C57BL/6 mice, two doses of MVA-CoV2-S or MVA-CoV2-S(3P) induced similar levels of SARS-CoV-2-specific B- and T-cell immune responses. Remarkably, a single administration of MVA-CoV2-S(3P) protected all K18-hACE2 mice from morbidity and mortality caused by SARS-CoV-2 infection, reducing SARS-CoV-2 viral loads, histopathological lesions, and levels of pro-inflammatory cytokines in the lungs. These results demonstrated that expression of a novel full-length prefusion-stabilized SARS-CoV-2 S protein by the MVA poxvirus vector enhanced immunogenicity and efficacy against SARS-CoV-2 in animal models, further supporting MVA-CoV2-S(3P) as an optimized vaccine candidate for clinical trials.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas de DNA/imunologia , Vacinas Virais/imunologia , Idoso , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/mortalidade , Vacinas contra COVID-19/genética , Linhagem Celular Tumoral , Embrião de Galinha , Chlorocebus aethiops , Citocinas/análise , Feminino , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasmídeos/genética , Glicoproteína da Espícula de Coronavírus/genética , Eficácia de Vacinas , Vacinas de DNA/genética , Vaccinia virus/imunologia , Células Vero , Vacinas Virais/genética
19.
Sci Rep ; 10(1): 18703, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33127956

RESUMO

Heterologous BCG prime-boost regimens represent a promising strategy for an urgently required improved tuberculosis vaccine. Identifying the mechanisms which underpin the enhanced protection induced by such strategies is one key aim which would significantly accelerate rational vaccine development. Experimentally, airway vaccination induces greater efficacy than parenteral delivery; in both conventional vaccination and heterologous boosting of parenteral BCG immunisation. However, the effect of delivering both the component prime and boost immunisations via the airway is not well known. Here we investigate delivery of both the BCG prime and adenovirus boost vaccination via the airway in a murine model, and demonstrate this approach may be able to improve the protective outcome over parenteral prime/airway boost. Intravascular staining of T cells in the lung revealed that the airway prime regimen induced more antigen-specific multifunctional CD4 and CD8 T cells to the lung parenchyma prior to challenge and indicated the route of both prime and boost to be critical to the location of induced resident T cells in the lung. Further, in the absence of a defined phenotype of vaccine-induced protection to tuberculosis; the magnitude and phenotype of vaccine-specific T cells in the parenchyma of the lung may provide insights into potential correlates of immunity.


Assuntos
Vacina BCG/administração & dosagem , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Pulmão/imunologia , Vacinas contra a Tuberculose/administração & dosagem , Adenoviridae/imunologia , Administração por Inalação , Animais , Antígenos de Bactérias/imunologia , Vacina BCG/imunologia , Feminino , Imunização Secundária , Inflamação , Camundongos , Camundongos Endogâmicos BALB C , Baço/imunologia , Vacinas contra a Tuberculose/imunologia
20.
Sci Rep ; 10(1): 8951, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32488046

RESUMO

African swine fever virus (ASFV) causes a lethal, haemorrhagic disease in domestic swine that threatens pig production across the globe. Unlike domestic pigs, warthogs, which are wildlife hosts of the virus, do not succumb to the lethal effects of infection. There are three amino acid differences between the sequence of the warthog and domestic pig RELA protein; a subunit of the NF-κB transcription factor that plays a key role in regulating the immune response to infections. Domestic pigs with all 3 or 2 of the amino acids from the warthog RELA orthologue have been generated by gene editing. To assess if these variations confer resilience to ASF we established an intranasal challenge model with a moderately virulent ASFV. No difference in clinical, virological or pathological parameters were observed in domestic pigs with the 2 amino acid substitution. Domestic pigs with all 3 amino acids found in warthog RELA were not resilient to ASF but a delay in onset of clinical signs and less viral DNA in blood samples and nasal secretions was observed in some animals. Inclusion of these and additional warthog genetic traits into domestic pigs may be one way to assist in combating the devastating impact of ASFV.


Assuntos
Febre Suína Africana/prevenção & controle , Ligases/genética , NF-kappa B/genética , Febre Suína Africana/genética , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/patogenicidade , Animais , Animais Selvagens/genética , Ligases/metabolismo , NF-kappa B/metabolismo , Engenharia de Proteínas/métodos , Sus scrofa/genética , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA