Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Methods Mol Biol ; 2831: 235-249, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39134854

RESUMO

The study of microtubules arrangements and dynamics during axon outgrowth and pathfinding has gained scientific interest during the last decade, and numerous technical resources for its visualization and analysis have been implemented. In this chapter, we describe the cell culture protocols of embryonic cortical and retinal neurons, the methods for transfecting them with fluorescent reporters of microtubule polymerization, and the procedures for time-lapse imaging and quantification in order to study microtubule dynamics during axon morphogenesis.


Assuntos
Axônios , Microtúbulos , Microtúbulos/metabolismo , Animais , Axônios/metabolismo , Polimerização , Imagem com Lapso de Tempo/métodos , Crescimento Neuronal , Neurônios/metabolismo , Neurônios/citologia , Camundongos , Células Cultivadas , Proteínas Associadas aos Microtúbulos/metabolismo
2.
J Cell Sci ; 137(9)2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38587100

RESUMO

During development, neurons achieve a stereotyped neuron type-specific morphology, which relies on dynamic support by microtubules (MTs). An important player is the augmin complex (hereafter augmin), which binds to existing MT filaments and recruits the γ-tubulin ring complex (γ-TuRC), to form branched MTs. In cultured neurons, augmin is important for neurite formation. However, little is known about the role of augmin during neurite formation in vivo. Here, we have revisited the role of mammalian augmin in culture and then turned towards the class four Drosophila dendritic arborization (c4da) neurons. We show that MT density is maintained through augmin in cooperation with the γ-TuRC in vivo. Mutant c4da neurons show a reduction of newly emerging higher-order dendritic branches and in turn also a reduced number of their characteristic space-filling higher-order branchlets. Taken together, our data reveal a cooperative function for augmin with the γ-TuRC in forming enough MTs needed for the appropriate differentiation of morphologically complex dendrites in vivo.


Assuntos
Dendritos , Proteínas de Drosophila , Proteínas Associadas aos Microtúbulos , Microtúbulos , Animais , Microtúbulos/metabolismo , Dendritos/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Drosophila melanogaster/metabolismo , Tubulina (Proteína)/metabolismo , Drosophila/metabolismo , Humanos , Neurônios/metabolismo , Neurônios/citologia
3.
Mol Ther ; 32(6): 1739-1759, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38556794

RESUMO

Spinal cord injury (SCI) is a debilitating condition currently lacking treatment. Severe SCI causes the loss of most supraspinal inputs and neuronal activity caudal to the injury, which, coupled with the limited endogenous capacity for spontaneous regeneration, can lead to complete functional loss even in anatomically incomplete lesions. We hypothesized that transplantation of mature dorsal root ganglia (DRGs) genetically modified to express the NaChBac sodium channel could serve as a therapeutic option for functionally complete SCI. We found that NaChBac expression increased the intrinsic excitability of DRG neurons and promoted cell survival and neurotrophic factor secretion in vitro. Transplantation of NaChBac-expressing dissociated DRGs improved voluntary locomotion 7 weeks after injury compared to control groups. Animals transplanted with NaChBac-expressing DRGs also possessed higher tubulin-positive neuronal fiber and myelin preservation, although serotonergic descending fibers remained unaffected. We observed early preservation of the corticospinal tract 14 days after injury and transplantation, which was lost 7 weeks after injury. Nevertheless, transplantation of NaChBac-expressing DRGs increased the neuronal excitatory input by an increased number of VGLUT2 contacts immediately caudal to the injury. Our work suggests that the transplantation of NaChBac-expressing dissociated DRGs can rescue significant motor function, retaining an excitatory neuronal relay activity immediately caudal to injury.


Assuntos
Gânglios Espinais , Locomoção , Traumatismos da Medula Espinal , Gânglios Espinais/metabolismo , Animais , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/genética , Canais de Sódio/metabolismo , Canais de Sódio/genética , Ratos , Feminino , Recuperação de Função Fisiológica , Modelos Animais de Doenças , Neurônios/metabolismo , Camundongos , Expressão Gênica , Bainha de Mielina/metabolismo , Sobrevivência Celular
4.
J Neuroinflammation ; 20(1): 1, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36593485

RESUMO

Chronic hyperammonemia, a main contributor to hepatic encephalopathy (HE), leads to neuroinflammation which alters neurotransmission leading to cognitive impairment. There are no specific treatments for the neurological alterations in HE. Extracellular vesicles (EVs) from mesenchymal stem cells (MSCs) reduce neuroinflammation in some pathological conditions. The aims were to assess if treatment of hyperammonemic rats with EVs from MSCs restores cognitive function and analyze the underlying mechanisms. EVs injected in vivo reach the hippocampus and restore performance of hyperammonemic rats in object location, object recognition, short-term memory in the Y-maze and reference memory in the radial maze. Hyperammonemic rats show reduced TGFß levels and membrane expression of TGFß receptors in hippocampus. This leads to microglia activation and reduced Smad7-IkB pathway, which induces NF-κB nuclear translocation in neurons, increasing IL-1ß which alters AMPA and NMDA receptors membrane expression, leading to cognitive impairment. These effects are reversed by TGFß in the EVs from MSCs, which activates TGFß receptors, reducing microglia activation and NF-κB nuclear translocation in neurons by normalizing the Smad7-IkB pathway. This normalizes IL-1ß, AMPA and NMDA receptors membrane expression and, therefore, cognitive function. EVs from MSCs may be useful to improve cognitive function in patients with hyperammonemia and minimal HE.


Assuntos
Vesículas Extracelulares , Hiperamonemia , Células-Tronco Mesenquimais , Ratos , Animais , Ratos Wistar , Inflamação/metabolismo , Doenças Neuroinflamatórias , Receptores de N-Metil-D-Aspartato/metabolismo , Hiperamonemia/terapia , Hiperamonemia/metabolismo , NF-kappa B/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia , Hipocampo/metabolismo , Cognição , Células-Tronco Mesenquimais/metabolismo , Vesículas Extracelulares/metabolismo , Fator de Crescimento Transformador beta/metabolismo
5.
Front Mol Neurosci ; 14: 759404, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34924953

RESUMO

During the establishment of neural circuitry axons often need to cover long distances to reach remote targets. The stereotyped navigation of these axons defines the connectivity between brain regions and cellular subtypes. This chemotrophic guidance process mostly relies on the spatio-temporal expression patterns of extracellular proteins and the selective expression of their receptors in projection neurons. Axon guidance is stimulated by guidance proteins and implemented by neuronal traction forces at the growth cones, which engage local cytoskeleton regulators and cell adhesion proteins. Different layers of guidance signaling regulation, such as the cleavage and processing of receptors, the expression of co-receptors and a wide variety of intracellular cascades downstream of receptors activation, have been progressively unveiled. Also, in the last decades, the regulation of microtubule (MT) assembly, stability and interactions with the submembranous actin network in the growth cone have emerged as crucial effector mechanisms in axon pathfinding. In this review, we will delve into the intracellular signaling cascades downstream of guidance receptors that converge on the MT cytoskeleton of the growing axon. In particular, we will focus on the microtubule-associated proteins (MAPs) network responsible of MT dynamics in the axon and growth cone. Complementarily, we will discuss new evidences that connect defects in MT scaffold proteins, MAPs or MT-based motors and axon misrouting during brain development.

6.
J Cell Biol ; 219(9)2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32497170

RESUMO

Microtubule (MT) plus-end tracking proteins (+TIPs) are central players in the coordination between the MT and actin cytoskeletons in growth cones (GCs) during axon guidance. The +TIP Navigator-1 (NAV1) is expressed in the developing nervous system, yet its neuronal functions remain poorly elucidated. Here, we report that NAV1 controls the dynamics and motility of the axonal GCs of cortical neurons in an EB1-dependent manner and is required for axon turning toward a gradient of netrin-1. NAV1 accumulates in F-actin-rich domains of GCs and binds actin filaments in vitro. NAV1 can also bind MTs independently of EB1 in vitro and crosslinks nonpolymerizing MT plus ends to actin filaments in axonal GCs, preventing MT depolymerization in F-actin-rich areas. Together, our findings pinpoint NAV1 as a key player in the actin-MT crosstalk that promotes MT persistence at the GC periphery and regulates GC steering. Additionally, we present data assigning to NAV1 an important role in the radial migration of cortical projection neurons in vivo.


Assuntos
Actinas/metabolismo , Axônios/metabolismo , Cones de Crescimento/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Orientação de Axônios/fisiologia , Linhagem Celular , Movimento Celular/fisiologia , Feminino , Células HEK293 , Humanos , Camundongos , Netrina-1/metabolismo , Ligação Proteica/fisiologia
7.
Nat Commun ; 9(1): 2330, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29899413

RESUMO

Organization of microtubules into ordered arrays is best understood in mitotic systems, but remains poorly characterized in postmitotic cells such as neurons. By analyzing the cycling cell microtubule cytoskeleton proteome through expression profiling and targeted RNAi screening for candidates with roles in neurons, we have identified the mitotic kinase NEK7. We show that NEK7 regulates dendrite morphogenesis in vitro and in vivo. NEK7 kinase activity is required for dendrite growth and branching, as well as spine formation and morphology. NEK7 regulates these processes in part through phosphorylation of the kinesin Eg5/KIF11, promoting its accumulation on microtubules in distal dendrites. Here, Eg5 limits retrograde microtubule polymerization, which is inhibitory to dendrite growth and branching. Eg5 exerts this effect through microtubule stabilization, independent of its motor activity. This work establishes NEK7 as a general regulator of the microtubule cytoskeleton, controlling essential processes in both mitotic cells and postmitotic neurons.


Assuntos
Dendritos/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Quinases Relacionadas a NIMA/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Técnicas de Silenciamento de Genes , Humanos , Cinesinas/genética , Camundongos , Camundongos Knockout , Mitose , Quinases Relacionadas a NIMA/deficiência , Quinases Relacionadas a NIMA/genética , Neurogênese/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Fosforilação
8.
Nat Commun ; 7: 12187, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27405868

RESUMO

Neurons display a highly polarized microtubule network that mediates trafficking throughout the extensive cytoplasm and is crucial for neuronal differentiation and function. In newborn migrating neurons, the microtubule network is organized by the centrosome. During neuron maturation, however, the centrosome gradually loses this activity, and how microtubules are organized in more mature neurons remains poorly understood. Here, we demonstrate that microtubule organization in post-mitotic neurons strongly depends on non-centrosomal nucleation mediated by augmin and by the nucleator γTuRC. Disruption of either complex not only reduces microtubule density but also microtubule bundling. These microtubule defects impair neurite formation, interfere with axon specification and growth, and disrupt axonal trafficking. In axons augmin does not merely mediate nucleation of microtubules but ensures their uniform plus end-out orientation. Thus, the augmin-γTuRC module, initially identified in mitotic cells, may be commonly used to generate and maintain microtubule configurations with specific polarity.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Neurônios/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Transporte Axonal , Axônios/metabolismo , Polaridade Celular , Centrossomo , Camundongos , Centro Organizador dos Microtúbulos , Complexos Multiproteicos/metabolismo , Neuritos/metabolismo , Neurogênese , Neurônios/citologia , Polos do Fuso/metabolismo
9.
Nat Commun ; 6: 7676, 2015 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-26158450

RESUMO

CEP63 is a centrosomal protein that facilitates centriole duplication and is regulated by the DNA damage response. Mutations in CEP63 cause Seckel syndrome, a human disease characterized by microcephaly and dwarfism. Here we demonstrate that Cep63-deficient mice recapitulate Seckel syndrome pathology. The attrition of neural progenitor cells involves p53-dependent cell death, and brain size is rescued by the deletion of p53. Cell death is not the result of an aberrant DNA damage response but is triggered by centrosome-based mitotic errors. In addition, Cep63 loss severely impairs meiotic recombination, leading to profound male infertility. Cep63-deficient spermatocytes display numerical and structural centrosome aberrations, chromosome entanglements and defective telomere clustering, suggesting that a reduction in centrosome-mediated chromosome movements underlies recombination failure. Our results provide novel insight into the molecular pathology of microcephaly and establish a role for the centrosome in meiotic recombination.


Assuntos
Proteínas de Ciclo Celular/genética , Centrossomo/metabolismo , Nanismo/genética , Recombinação Homóloga/genética , Meiose/genética , Microcefalia/genética , Espermatócitos/metabolismo , Proteína Supressora de Tumor p53/genética , Animais , Dano ao DNA , Fácies , Imuno-Histoquímica , Masculino , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Recombinação Genética/genética , Contagem de Espermatozoides , Espermatócitos/patologia
10.
Curr Biol ; 25(7): R294-9, 2015 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-25829017

RESUMO

Microtubules mediate important cellular processes by forming highly ordered arrays. Organization of these networks is achieved by nucleating and anchoring microtubules at centrosomes and other structures collectively known as microtubule-organizing centers (MTOCs). However, the diverse microtubule configurations found in different cell types may not be generated and maintained by MTOCs alone. Work over the last few years has revealed a mechanism that has the capacity to generate cell-type-specific microtubule arrays independently of a specific organizer: nucleation of microtubules from the lateral surface of pre-existing microtubules. This type of nucleation requires cooperation between two different multi-subunit protein complexes, augmin and the γ-tubulin ring complex (γTuRC). Here we review recent molecular insight into microtubule-dependent nucleation and discuss the possibility that the augmin-γTuRC module, initially described in mitosis, may broadly contribute to microtubule organization also in non-mitotic cells.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Centro Organizador dos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Humanos
11.
Cereb Cortex ; 21(4): 777-88, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20739478

RESUMO

In the cerebral cortex, the functional output of projection neurons is fine-tuned by inhibitory neurons present in the network, which use γ-aminobutyric acid (GABA) as their main neurotransmitter. Previous studies have suggested that the expression levels of the rate-limiting GABA synthetic enzyme, GAD65, depend on brain derived neurotrophic factor (BDNF)/TrkB activation. However, the molecular mechanisms by which this neurotrophic factor and its receptor controls GABA synthesis are still unknown. Here, we show a direct regulation of the GAD65 gene by BDNF-TrkB signaling via CREB in cortical interneurons. Conditional ablation of TrkB in cortical interneurons causes a cell-autonomous decrease in the synaptically enriched GAD65 protein and its transcripts levels, suggesting that transcriptional regulation of the GAD65 gene is altered. Dissection of the intracellular pathway that underlies this process revealed that BDNF/TrkB signaling controls the transcription of GAD65 in a Ras-ERK-CREB-dependent manner. Our study reveals a novel molecular mechanism through which BDNF/TrkB signaling may modulate the maturation and function of cortical inhibitory circuits.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação da Expressão Gênica/fisiologia , Glutamato Descarboxilase/biossíntese , Interneurônios/metabolismo , Receptor trkB/metabolismo , Animais , Córtex Cerebral/metabolismo , Imunoprecipitação da Cromatina , Glutamato Descarboxilase/genética , Immunoblotting , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologia , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA