Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Entropy (Basel) ; 23(1)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445685

RESUMO

The combination of network sciences, nonlinear dynamics and time series analysis provides novel insights and analogies between the different approaches to complex systems. By combining the considerations behind the Lyapunov exponent of dynamical systems and the average entropy of transition probabilities for Markov chains, we introduce a network measure for characterizing the dynamics on state-transition networks with special focus on differentiating between chaotic and cyclic modes. One important property of this Lyapunov measure consists of its non-monotonous dependence on the cylicity of the dynamics. Motivated by providing proper use cases for studying the new measure, we also lay out a method for mapping time series to state transition networks by phase space coarse graining. Using both discrete time and continuous time dynamical systems the Lyapunov measure extracted from the corresponding state-transition networks exhibits similar behavior to that of the Lyapunov exponent. In addition, it demonstrates a strong sensitivity to boundary crisis suggesting applicability in predicting the collapse of chaos.

3.
Sci Rep ; 10(1): 21305, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33277528

RESUMO

Oscillation and collective behavior of diffusion flames is a fascinating phenomena. Considering candle bundles with different sizes in variable oxygen concentration, the flickering dynamics of the flames are experimentally and theoretically investigated. Trends for the flickering frequency as a function of the candle number in the bundle and oxygen concentration is revealed for various topologies of the candles packing. The collective behavior of the flames as a function of their separation distance is studied by measuring an appropriate synchronization order parameter and through the common oscillation frequency. In agreement with previous results we find a discontinuous phase transition between an in-phase synchronized state at small separation distance and a counter-phase synchronized state at larger separation distances. A previously used dynamical model is modified in order to accommodate our experimental findings.

4.
PLoS One ; 14(6): e0217004, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31216272

RESUMO

Behavior is characterized by sequences of goal oriented conducts, such as food uptake, socializing and resting. Classically, one would define for each task a corresponding satisfaction level, with the agent engaging, at a given time, in the activity having the lowest satisfaction level. Alternatively, one may consider that the agent follows the overarching objective to generate sequences of distinct activities. To achieve a balanced distribution of activities would then be the primary goal, and not to master a specific task. In this setting the agent would show two types of behaviors, task-oriented and task-searching phases, with the latter interseeding the former. We study the emergence of autonomous task switching for the case of a simulated robot arm. Grasping one of several moving objects corresponds in this setting to a specific activity. Overall, the arm should follow a given object temporarily and then move away, in order to search for a new target and reengage. We show that this behavior can be generated robustly when modeling the arm as an adaptive dynamical system. The dissipation function is in this approach time dependent. The arm is in a dissipative state when searching for a nearby object, dissipating energy on approach. Once close, the dissipation function starts to increase, with the eventual sign change implying that the arm will take up energy and wander off. The resulting explorative state ends when the dissipation function becomes again negative and the arm selects a new target. We believe that our approach may be generalized to generate self-organized sequences of activities in general.


Assuntos
Objetivos , Robótica , Extremidade Superior , Movimento (Física)
5.
Front Neurorobot ; 12: 40, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30050427

RESUMO

Self-organized robots may develop attracting states within the sensorimotor loop, that is within the phase space of neural activity, body and environmental variables. Fixpoints, limit cycles and chaotic attractors correspond in this setting to a non-moving robot, to directed, and to irregular locomotion respectively. Short higher-order control commands may hence be used to kick the system from one self-organized attractor robustly into the basin of attraction of a different attractor, a concept termed here as kick control. The individual sensorimotor states serve in this context as highly compliant motor primitives. We study different implementations of kick control for the case of simulated and real-world wheeled robots, for which the dynamics of the distinct wheels is generated independently by local feedback loops. The feedback loops are mediated by rate-encoding neurons disposing exclusively of propriosensoric inputs in terms of projections of the actual rotational angle of the wheel. The changes of the neural activity are then transmitted into a rotational motion by a simulated transmission rod akin to the transmission rods used for steam locomotives. We find that the self-organized attractor landscape may be morphed both by higher-level control signals, in the spirit of kick control, and by interacting with the environment. Bumping against a wall destroys the limit cycle corresponding to forward motion, with the consequence that the dynamical variables are then attracted in phase space by the limit cycle corresponding to backward moving. The robot, which does not dispose of any distance or contact sensors, hence reverses direction autonomously.

6.
Sci Rep ; 7(1): 1087, 2017 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-28439074

RESUMO

For a chaotic system pairs of initially close-by trajectories become eventually fully uncorrelated on the attracting set. This process of decorrelation can split into an initial exponential decrease and a subsequent diffusive process on the chaotic attractor causing the final loss of predictability. Both processes can be either of the same or of very different time scales. In the latter case the two trajectories linger within a finite but small distance (with respect to the overall extent of the attractor) for exceedingly long times and remain partially predictable. Standard tests for chaos widely use inter-orbital correlations as an indicator. However, testing partially predictable chaos yields mostly ambiguous results, as this type of chaos is characterized by attractors of fractally broadened braids. For a resolution we introduce a novel 0-1 indicator for chaos based on the cross-distance scaling of pairs of initially close trajectories. This test robustly discriminates chaos, including partially predictable chaos, from laminar flow. Additionally using the finite time cross-correlation of pairs of initially close trajectories, we are able to identify laminar flow as well as strong and partially predictable chaos in a 0-1 manner solely from the properties of pairs of trajectories.

7.
Front Neurorobot ; 10: 12, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27803661

RESUMO

We examine the hypothesis, that short-term synaptic plasticity (STSP) may generate self-organized motor patterns. We simulated sphere-shaped autonomous robots, within the LPZRobots simulation package, containing three weights moving along orthogonal internal rods. The position of a weight is controlled by a single neuron receiving excitatory input from the sensor, measuring its actual position, and inhibitory inputs from the other two neurons. The inhibitory connections are transiently plastic, following physiologically inspired STSP-rules. We find that a wide palette of motion patterns are generated through the interaction of STSP, robot, and environment (closed-loop configuration), including various forward meandering and circular motions, together with chaotic trajectories. The observed locomotion is robust with respect to additional interactions with obstacles. In the chaotic phase the robot is seemingly engaged in actively exploring its environment. We believe that our results constitute a concept of proof that transient synaptic plasticity, as described by STSP, may potentially be important for the generation of motor commands and for the emergence of complex locomotion patterns, adapting seamlessly also to unexpected environmental feedback. We observe spontaneous and collision induced mode switchings, finding in addition, that locomotion may follow transiently limit cycles which are otherwise unstable. Regular locomotion corresponds to stable limit cycles in the sensorimotor loop, which may be characterized in turn by arbitrary angles of propagation. This degeneracy is, in our analysis, one of the drivings for the chaotic wandering observed for selected parameter settings, which is induced by the smooth diffusion of the angle of propagation.

8.
Phys Rev E ; 94(2-1): 022311, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27627321

RESUMO

The gain-loss asymmetry, observed in the inverse statistics of stock indices is present for logarithmic return levels that are over 2%, and it is the result of the non-Pearson-type autocorrelations in the index. These non-Pearson-type correlations can be viewed also as functionally dependent daily volatilities, extending for a finite time interval. A generalized time-window shuffling method is used to show the existence of such autocorrelations. Their characteristic time scale proves to be smaller (less than 25 trading days) than what was previously believed. It is also found that this characteristic time scale has decreased with the appearance of program trading in the stock market transactions. Connections with the leverage effect are also established.

9.
Sci Rep ; 5: 12316, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26198731

RESUMO

A general class of prototype dynamical systems is introduced, which allows to study the generation of complex bifurcation cascades of limit cycles, including bifurcations breaking spontaneously a symmetry of the system, period doubling and homoclinic bifurcations, and transitions to chaos induced by sequences of limit cycle bifurcations. The prototype systems are adaptive, with friction forces f(V(x)) being functionally dependent exclusively on the mechanical potential V(x), characterized in turn by a finite number of local minima. We discuss several low-dimensional systems, with friction forces f(V) which are linear, quadratic or cubic polynomials in the potential V. We point out that the zeros of f(V) regulate both the relative importance of energy uptake and dissipation respectively, serving at the same time as bifurcation parameters, hence allowing for an intuitive interpretation of the overall dynamical behavior. Starting from simple Hopf- and homoclinic bifurcations, complex sequences of limit cycle bifurcations are observed when the energy uptake gains progressively in importance.

10.
Artigo em Inglês | MEDLINE | ID: mdl-23679502

RESUMO

The dynamics of a spring-block train placed on a moving conveyor belt is investigated both by simple experiments and computer simulations. The first block is connected by a spring to an external static point and, due to the dragging effect of the belt, the blocks undergo complex stick-slip dynamics. A qualitative agreement with the experimental results can be achieved only by taking into account the spatial inhomogeneity of the friction force on the belt's surface, modeled as noise. As a function of the velocity of the conveyor belt and the noise strength, the system exhibits complex, self-organized critical, sometimes chaotic, dynamics and phase transition-like behavior. Noise-induced chaos and intermittency is also observed. Simulations suggest that the maximum complexity of the dynamical states is achieved for a relatively small number of blocks (around five).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA