Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
medRxiv ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38699352

RESUMO

Background: Adolescent self-reported psychotic experiences are associated with mental illness and could help guide prevention strategies. The Community Assessment of Psychic Experiences (CAPE) was developed over 20 years ago. In a rapidly changing society, where new generations of adolescents are growing up in an increasingly digital world, it is crucial to ensure high reliability and validity of the questionnaire. Methods: In this observational validation study, we used unique transgenerational questionnaire and health registry data from the Norwegian Mother, Father, and Child Cohort, a population-based pregnancy cohort. Adolescents, aged ~14 years, responded to the CAPE-16 (n = 18,835) and fathers to the CAPE-9 questionnaire (n = 28,793). We investigated the psychometric properties of CAPE-16 through factor analyses, measurement invariance testing across biological sex, response before/ during the COVID-19 pandemic, and generations (comparison with fathers), and examined associations with later psychiatric diagnoses. Outcomes: One third (33·4%) of adolescents reported lifetime psychotic experiences. We confirmed a three-factor structure (paranoia, bizarre thoughts, and hallucinations) of CAPE-16, and observed good scale reliability of the distress and frequency subscales (ω = ·86 and ·90). CAPE-16 measured psychotic experiences were invariant to biological sex and pandemic status. CAPE-9 was non-invariant across generations, with items related to understanding of the digital world (electrical influences) prone to bias. CAPE-16 sum scores were associated with a subsequent psychiatric diagnosis, particularly psychotic disorders (frequency: OR = 2·06; 97·5% CI = 1·70-2·46; distress: OR = 1·93; 97·5% CI = 1·63-2·26). Interpretation: CAPE-16 showed robust psychometric properties across sex and pandemic status, and sum scores were associated with subsequent psychiatric diagnoses, particularly psychotic disorders. These findings suggest that with certain adjustments, CAPE-16 could have value as a screening tool for adolescents in the modern, digital world. Funding: European Union's Horizon 2020 Programme, Research Council of Norway, South-Eastern Norway Regional Health Authority, NIMH, and the KG Jebsen Stiftelsen.

3.
Brain Commun ; 6(2): fcae083, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510210

RESUMO

Sarcopenia refers to age-related loss of muscle mass and function and is related to impaired somatic and brain health, including cognitive decline and Alzheimer's disease. However, the relationships between sarcopenia, brain structure and cognition are poorly understood. Here, we investigate the associations between sarcopenic traits, brain structure and cognitive performance. We included 33 709 UK Biobank participants (54.2% female; age range 44-82 years) with structural and diffusion magnetic resonance imaging, thigh muscle fat infiltration (n = 30 561) from whole-body magnetic resonance imaging (muscle quality indicator) and general cognitive performance as indicated by the first principal component of a principal component analysis across multiple cognitive tests (n = 22 530). Of these, 1703 participants qualified for probable sarcopenia based on low handgrip strength, and we assigned the remaining 32 006 participants to the non-sarcopenia group. We used multiple linear regression to test how sarcopenic traits (probable sarcopenia versus non-sarcopenia and percentage of thigh muscle fat infiltration) relate to cognitive performance and brain structure (cortical thickness and area, white matter fractional anisotropy and deep and lower brain volumes). Next, we used structural equation modelling to test whether brain structure mediated the association between sarcopenic and cognitive traits. We adjusted all statistical analyses for confounders. We show that sarcopenic traits (probable sarcopenia versus non-sarcopenia and muscle fat infiltration) are significantly associated with lower cognitive performance and various brain magnetic resonance imaging measures. In probable sarcopenia, for the included brain regions, we observed widespread significant lower white matter fractional anisotropy (77.1% of tracts), predominantly lower regional brain volumes (61.3% of volumes) and thinner cortical thickness (37.9% of parcellations), with |r| effect sizes in (0.02, 0.06) and P-values in (0.0002, 4.2e-29). In contrast, we observed significant associations between higher muscle fat infiltration and widespread thinner cortical thickness (76.5% of parcellations), lower white matter fractional anisotropy (62.5% of tracts) and predominantly lower brain volumes (35.5% of volumes), with |r| effect sizes in (0.02, 0.07) and P-values in (0.0002, 1.9e-31). The regions showing the most significant effect sizes across the cortex, white matter and volumes were of the sensorimotor system. Structural equation modelling analysis revealed that sensorimotor brain regions mediate the link between sarcopenic and cognitive traits [probable sarcopenia: P-values in (0.0001, 1.0e-11); muscle fat infiltration: P-values in (7.7e-05, 1.7e-12)]. Our findings show significant associations between sarcopenic traits, brain structure and cognitive performance in a middle-aged and older adult population. Mediation analyses suggest that regional brain structure mediates the association between sarcopenic and cognitive traits, with potential implications for dementia development and prevention.

4.
Nat Commun ; 15(1): 2639, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531844

RESUMO

Asymmetry between the left and right hemisphere is a key feature of brain organization. Hemispheric functional specialization underlies some of the most advanced human-defining cognitive operations, such as articulated language, perspective taking, or rapid detection of facial cues. Yet, genetic investigations into brain asymmetry have mostly relied on common variants, which typically exert small effects on brain-related phenotypes. Here, we leverage rare genomic deletions and duplications to study how genetic alterations reverberate in human brain and behavior. We designed a pattern-learning approach to dissect the impact of eight high-effect-size copy number variations (CNVs) on brain asymmetry in a multi-site cohort of 552 CNV carriers and 290 non-carriers. Isolated multivariate brain asymmetry patterns spotlighted regions typically thought to subserve lateralized functions, including language, hearing, as well as visual, face and word recognition. Planum temporale asymmetry emerged as especially susceptible to deletions and duplications of specific gene sets. Targeted analysis of common variants through genome-wide association study (GWAS) consolidated partly diverging genetic influences on the right versus left planum temporale structure. In conclusion, our gene-brain-behavior data fusion highlights the consequences of genetically controlled brain lateralization on uniquely human cognitive capacities.


Assuntos
Variações do Número de Cópias de DNA , Estudo de Associação Genômica Ampla , Humanos , Lateralidade Funcional , Mapeamento Encefálico , Encéfalo , Imageamento por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA