Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 12253, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112814

RESUMO

Loss-of-function (LoF) mutations in KCNQ1, encoding the voltage-gated K+ channel Kv7.1, lead to long QT syndrome 1 (LQT1). LQT1 patients also present with post-prandial hyperinsulinemia and hypoglycaemia. In contrast, KCNQ1 polymorphisms are associated with diabetes, and LQTS patients have a higher prevalence of diabetes. We developed a mouse model with a LoF Kcnq1 mutation using CRISPR-Cas9 and hypothesized that this mouse model would display QT prolongation, increased glucose-stimulated insulin secretion and allow for interrogation of Kv7.1 function in islets. Mice were characterized by electrocardiography and oral glucose tolerance tests. Ex vivo, islet glucose-induced insulin release was measured, and beta-cell area quantified by immunohistochemistry. Homozygous mice had QT prolongation. Ex vivo, glucose-stimulated insulin release was increased in islets from homozygous mice at 12-14 weeks, while beta-cell area was reduced. Non-fasting blood glucose levels were decreased at this age. In follow-up studies 8-10 weeks later, beta-cell area was similar in all groups, while glucose-stimulated insulin secretion was now reduced in islets from hetero- and homozygous mice. Non-fasting blood glucose levels had normalized. These data suggest that Kv7.1 dysfunction is involved in a transition from hyper- to hyposecretion of insulin, potentially explaining the association with both hypoglycemia and hyperglycemia in LQT1 patients.


Assuntos
Secreção de Insulina , Insulina/biossíntese , Ilhotas Pancreáticas/metabolismo , Canal de Potássio KCNQ1/genética , Síndrome do QT Longo/metabolismo , Síndrome do QT Longo/fisiopatologia , Mutação com Perda de Função , Alelos , Substituição de Aminoácidos , Animais , Modelos Animais de Doenças , Suscetibilidade a Doenças , Glucose/metabolismo , Síndrome do QT Longo/etiologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA