Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(17): 20023-20031, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35438478

RESUMO

In this work, we present a series of porous, honeycomb-patterned polymer films containing CsPbBr3 perovskite nanocrystals as light emitters prepared by the breath figure approach. Microscopy analysis of the topography and composition of the material evidence that the CsPbBr3 nanocrystals are homogeneously distributed within the polymer matrix but preferably confined inside the pores due to the fabrication process. The optical properties of the CsPbBr3 nanocrystals remain unaltered after the film formation, proving that they are stable inside the polystyrene matrix, which protects them from degradation by environmental factors. Moreover, these surfaces present highly hydrophobic behavior due to their high porosity and defined micropatterning, which is in agreement with the Cassie-Baxter model. This is evidenced by performing a proof-of-concept coating on top of 3D-printed LED lenses, conferring the material with self-cleaning properties, while the CsPbBr3 nanocrystals embedded inside the polymeric matrix maintain their luminescent behavior.

2.
ACS Appl Mater Interfaces ; 5(9): 3943-51, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23544906

RESUMO

Herein, a facile water-assisted templating technique, the so-called breath figures method, in combination with phase separation process, was employed to prepare multifunctional micropatterned films. Tetrahydrofuran solutions of incompatible ternary blends consisting of high-molecular-weight polystyrene, an amphiphilic block copolymer, polystyrene-b-poly[poly(ethylene glycol) methyl ether methacrylate] (PS40-b-P(PEGMA300)48), and a fluorinated homopolymer, poly(2,3,4,5,6-pentafluorostyrene) (P5FS21) were casted under humid atmosphere varying the proportion of the components. Two simultaneously occurring processes, i.e., the breath figures mechanism and the phase separation process, lead to unprecedented morphologies that could be tuned by simply varying the relative humidity or the composition of the blend. Confocal micro-Raman spectroscopy served to provide information about the location and distribution of the different functionalities in the films. As a result, both the amphiphilic block copolymer and the fluorinated polymer were mainly located in the cavities. Above a certain percentage of relative humidity, honeycomb structured films were obtained in which the block copolymer is distributed on the edge of the pore as a result of the affinity by the condensing water droplet and the coffee stain effect. The homopolymer is also preferentially situated at the pore edge, but forming spherical domains with narrow polydisperse sizes. Moreover, thiolated glucose molecules were specifically attached to the P5FS21 domains via thiol-para fluorine "click" reaction. Subsequently, the specific lectin (Concanavalin A, Canavalia ensiformis) was attached to the surface by conjugation with the glucose moieties. The successful binding of the Con A was demonstrated by the fluorescence, observed exclusively at the areas where P5FS21 domains are located. This nonlithographic method opens a new route to fabricate a huge variety of microstructured polymer films in terms of morphology not only for protein patterning, as illustrated in this manuscript, but also to produce a diversity of functional group arrangements.


Assuntos
Química Click/métodos , Microtecnologia/instrumentação , Polímeros/química , Compostos de Sulfidrila/química , Concanavalina A/química , Glucose/química , Microscopia Eletrônica de Varredura , Porosidade , Análise Espectral Raman , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA