Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Med ; 120: 103332, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518627

RESUMO

As part of translational research projects, mice may be irradiated on radiobiology platforms such as the one at the ARRONAX cyclotron. Generally, these platforms do not feature an integrated imaging system. Moreover, in the context of ultra-high dose-rate radiotherapy (FLASH-RT), treatment planning should consider potential changes in the beam characteristics and internal movements in the animal. A patient-like set-up and methodology has been implemented to ensure target coverage during conformal irradiations of the brain, lungs and intestines. In addition, respiratory cycle amplitudes were quantified by fluoroscopic acquisitions on a mouse, to ensure organ coverage and to assess the impact of respiration during FLASH-RT using the 4D digital phantom MOBY. Furthermore, beam incidence direction was studied from mice µCBCT and Monte Carlo simulations. Finally,in vivodosimetry with dose-rate independent radiochromic films (OC-1) and their LET dependency were investigated. The immobilization system ensures that the animal is held in a safe and suitable position. The geometrical evaluation of organ coverage, after the addition of the margins around the organs, was satisfactory. Moreover, no measured differences were found between CONV and FLASH beams enabling a single model of the beamline for all planning studies. Finally, the LET-dependency of the OC-1 film was determined and experimentally verified with phantoms, as well as the feasibility of using these filmsin vivoto validate the targeting. The methodology developed ensures accurate and reproducible preclinical irradiations in CONV and FLASH-RT without in-room image guidance in terms of positioning, dose calculation andin vivodosimetry.


Assuntos
Terapia com Prótons , Radioterapia Conformacional , Humanos , Camundongos , Animais , Prótons , Terapia com Prótons/métodos , Pulmão , Imagens de Fantasmas , Método de Monte Carlo , Carmustina , Etoposídeo , Dosagem Radioterapêutica
2.
Radiother Oncol ; 187: 109820, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37516363

RESUMO

The ability to reduce toxicity of ultra-high dose rate (UHDR) helium ion irradiation has not been reported in vivo. Here, we tested UHDR helium ion irradiation in an embryonic zebrafish model. Our results show that UHDR helium ions spare body development and reduce spine curvature, compared to conventional dose rate.


Assuntos
Hélio , Peixe-Zebra , Animais , Hélio/uso terapêutico , Planejamento da Radioterapia Assistida por Computador/métodos , Íons/uso terapêutico , Dosagem Radioterapêutica
3.
Adv Radiat Oncol ; 8(2): 101124, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36578276

RESUMO

Purpose: Recently, ultrahigh-dose-rate radiation therapy (UHDR-RT) has emerged as a promising strategy to increase the benefit/risk ratio of external RT. Extensive work is on the way to characterize the physical and biological parameters that control the so-called "Flash" effect. However, this healthy/tumor differential effect is observable in in vivo models, which thereby drastically limits the amount of work that is achievable in a timely manner. Methods and Materials: In this study, zebrafish embryos were used to compare the effect of UHDR irradiation (8-9 kGy/s) to conventional RT dose rate (0.2 Gy/s) with a 68 MeV proton beam. Viability, body length, spine curvature, and pericardial edema were measured 4 days postirradiation. Results: We show that body length is significantly greater after UHDR-RT compared with conventional RT by 180 µm at 30 Gy and 90 µm at 40 Gy, while pericardial edema is only reduced at 30 Gy. No differences were obtained in terms of survival or spine curvature. Conclusions: Zebrafish embryo length appears as a robust endpoint, and we anticipate that this model will substantially fasten the study of UHDR proton-beam parameters necessary for "Flash."

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA