RESUMO
Drained agricultural peat soils pollute both the atmosphere and watercourses. Biochar has been observed to decrease greenhouse gas (GHG) emissions and nutrient loading in mineral soils. We studied effects of three biochar types with two application rates (10 and 30 Mg ha-1) on GHG fluxes as well as N and P leaching on peat soil. Peat monoliths were drilled from a long-term cultivated field and were watered either slightly (five dry periods) or heavily (four rainfall periods) during an 11-month laboratory experiment with intact peat columns. The incubation of bare peat profiles enhanced peat decomposition leading to high CO2 (up to 1300 mg CO2 m-2 h-1) and N2O emissions (even 10,000-50,000 µg N2O m-2 h-1) and NO3--N leaching (even 300-700 mg L-1) in all treatments. In the beginning of the experiment, the lower application rate of pine bark biochars increased N2O emission compared to control, but otherwise none of the biochars or their application rates significantly affected gas fluxes or nutrient leaching. These results indicate that moderate softwood biochar application does not help to mitigate the environmental problems of agricultural peat soils. Higher application rate of biochar pyrolyzed at high temperature is recommended for further studies with peat soils.
Assuntos
Carvão Vegetal , Óxido Nitroso , Solo , Carvão Vegetal/química , Solo/química , Óxido Nitroso/análise , Nitrogênio/análise , Agricultura/métodos , Poluentes Atmosféricos/análise , Gases de Efeito Estufa/análise , Poluentes do Solo/análiseRESUMO
Increases in the supply of atmospheric CO2 and N are expected to alter the carbon cycle, including CH4 emissions, in boreal peatlands. These effects were studied in a glasshouse experiment with peat monoliths cored from an oligotrophic pine fen. The cores with living plants were kept in 720 ppmv and 360 ppmv CO2 atmospheres for about 6 months under imitated natural temperature cycle. Fertilisation with NH4NO3 (3 g m-2 for 25 weeks) was applied to 18 of the 36 monoliths. The rate of CH4 flux was non-linearly dependent on the number of Eriophorum vaginatum shoots growing in the monoliths, probably due to the gas transport properties of the aerenchyma. The average CH4 efflux rate, standardised by the number of shoots, was increased by a maximum of 10-20% in response to the raised CO2 level. In the raised-NH4NO3 treatment, the increase in CH4 release was lower. The effect of combined CO2+NH4NO3 on CH4 release was negligible and even lower than in the single treatments. Both potential CH4 production and oxidation rates at 5, 15 and 25°C were higher near the surface than at the bottom of the core. As expected, the rates clearly depended on the incubation temperature, but the different treatments did not cause any consistent differences in either CH4 production or oxidation. The determination of potential CH4 production and oxidation in the laboratory is evidently too crude a method of differentiating substrate-induced differences in CH4 production and oxidation in vivo. These results indicate that an increase in atmospheric CO2 or N supply alone, at least in the short term, slightly enhances CH4 effluxes from boreal peatlands; but together their effect may even be restrictive.
RESUMO
Temporal and spatial variation in CH4 emissions was studied at hummock, Eriophorum lawn, flark and Carex lawn microsites in an oligotrophic pine fen over the growing season using a static chamber method, and CH4 production and oxidation potentials in peat profiles from hummock and flark were determined in laboratory incubation experiments. Emissions were lowest in the hummocks, and decreased with increasing hummock height, while in the lawns and flarks they increased with increasing sedge cover. Statistical response functions with water table and peat temperature as independent variables were calculated in order to reconstruct seasonal CH4 emissions by reference to the time series for peat temperature and water table specific to each microsite type. Mean CH4 emissions in the whole area in the snow-free period of 1993, weighted in terms of the proportions of the microsites, were 1.7 mol CH4 m-2. Potential CH4 production and oxidation rates were very low in the hummocks rising above the groundwater table, but were relatively similar when expressed per dry weight of peat both in the hummocks and flarks below the water table. The CH4 production potential increased in autumn at both microsites and CH4 oxidation potential seemed to decrease. The decrease in temperature in autumn certainly reduced in situ decomposition processes, possibly leaving unused substrates in the peat, which would explain the increase in CH4 production potential.