Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Water Health ; 21(8): 1032-1050, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37632379

RESUMO

The dissemination of antimicrobial resistance in the environment is an emerging global health problem. Wastewater treatment effluent and combined sewer overflows (CSOs) are major sources of antimicrobial resistance in urban rivers. This study aimed to clarify the effect of municipal wastewater treatment effluent and CSO on antimicrobial resistance genes (ARGs), mobile gene elements, and the microbial community in an urban river. The ARG abundance per 16S-based microbial population in the target river was 0.37-0.54 and 0.030-0.097 during the CSO event and dry weather, respectively. During the CSO event, the antimicrobial resistome in the river shifted toward a higher abundance of ARGs to clinically important drug classes, including macrolide, fluoroquinolone, and ß-lactam, whereas ARGs to sulfonamide and multidrug by efflux pump were relatively abundant in dry weather. The abundance of intI1 and tnpA genes were highly associated with the total ARG abundance, suggesting their potential application as an indicator for estimating resistome contamination. Increase of prophage during the CSO event suggested that impact of CSO has a greater potential for horizontal gene transfer (HGT) via transduction. Consequently, CSO not only increases the abundance of ARGs to clinically important antimicrobials but also possibly enhances potential of HGT in urban rivers.


Assuntos
Anti-Infecciosos , Microbiota , Rios , Antibacterianos/farmacologia , Macrolídeos
3.
Front Microbiol ; 14: 1126612, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846805

RESUMO

Introduction: Croatian superhigh-organic-sulfur Rasa coal had been mined for nearly 400 years. The release of hazardous trace elements (HTEs) and toxic organic pollutants (TOPs) into the local environment by coal mining, preparation, and combustion activities has resulted in pollution. Methods: In this study, the diversity and composition of microbial communities in estuarine sediment and soil samples as well as community function responses to the pollutants were investigated. Results: The results showed that PAH degradation does occur following 60 years of natural attenuation, the location is still heavily polluted by polycyclic aromatic hydrocarbons (PAHs) and HTEs. Microbial analyses have shown that high concentrations of PAHs have reduced the diversity and abundance of microbial communities. The pollution exerted an adverse, long-term impact on the microbial community structure and function in the brackish aquatic ecosystem. Microorganisms associated with the degradation of PAHs and sulfur-containing compounds have been enriched although the diversity and abundance of the microbial community have reduced. Fungi which are believed to be the main PAH degrader may play an important role initially, but the activity remains lower thereafter. It is the high concentrations of coal-derived PAHs, rather than HTEs, that have reduced the diversity and abundance of microbial communities and shaped the structure of the local microbiota. Discussion: This study could provide a basis for the monitoring and restoration of ecosystems impacted by coal mining activities considering the expected decommission of a large number of coal plants on a global scale in the coming years due to growing global climate change concerns.

4.
Water Res ; 221: 118827, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35820313

RESUMO

Viral indicators of human-fecal contamination in wastewaters and environmental waters have been getting much attention in the past decade. Cross-assembly phage (crAssphage) is the most abundant DNA virus in human feces. Recently, the usefulness of crAssphage as a microbial source tracking and water quality monitoring tool for human-fecal contamination has been highlighted. Here, we conducted a comprehensive review on crAssphage in water, focusing on detection methodology, concentration range in various waters and wastewaters, specificity to human-fecal contamination, and reduction in wastewater treatment systems. This review highlights that crAssphage is globally distributed in wastewaters and various fecal-contaminated water bodies at high concentrations without seasonal fluctuations. CrAssphage is highly specific to human-fecal contamination and is rarely found in animal feces. It also has a good potential as a performance indicator to ensure virus reduction in wastewater treatment systems. Accordingly, crAssphage could be an effective tool for monitoring of human-fecal contamination and potential presence of fecal pathogenic microbes in environmental waters. Bridging the research gaps highlighted in this review would make crAssphage a powerful tool to support the control of water-related health risks.


Assuntos
Bacteriófagos , Vírus , Purificação da Água , Animais , Monitoramento Ambiental/métodos , Fezes , Humanos , Vírus/genética , Águas Residuárias , Microbiologia da Água , Poluição da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA