Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biofabrication ; 9(1): 015016, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28000609

RESUMO

The study of breast cancer metastasis is limited due to poor knowledge of molecular progression of breast tumor and varied heterogeneity. For a better understanding of tumor metastasis, a reliable 3D in vitro model bridging the gap between 2D cultures and in vivo animal model studies is essential. Our study is focused on two key points: (i) designing a 3D microenvironment for studying metastasis and (ii) simulating the metastasis milieu by inducing epithelial to mesenchymal transition (EMT) and mesenchymal to epithelial transition (MET). An electrospun gelatin nanofiber matrix (EGNF) was fabricated using electrospinning and further dip coated with different concentrations of collagen to obtain surface complexity and mechanical properties, similar to connective tissues. Nanofiber matrices were physically characterized by Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), and field-emission scanning electron microscopy (FESEM). The FTIR, AFM, and FESEM results indicated the crosslinking and confirmed the presence of pores in the nanofiber matrices. Comparative studies on biocompatibility, cell attachment, and the proliferation of MCF-7 cells on EGNF and collagen coated gelatin nanofibrous matrix (CCGM) revealed higher cellular attachment and proliferation in CCGM. CCGM with human metastatic breast cancer cell line (MCF-7) was taken to study breast cancer metastasis using estrogen (induces EMT) and progesterone (induces MET) hormones for 24 h. Quantitative real-time PCR was used for quantifying the expression of metastasis related genes, and fluorescence microscopy for verifying the invasion of cells to the matrices. The expression of E-cadherin and matrix metalloproteinase 2 (MMP 2) confirmed the occurrence of EMT and MET. Live cell imaging and cellular attachment showed significant increase of cellular invasion in crosslinked 0.15% CCGM that serves as a suitable non-toxic, biocompatible, and affordable scaffold for studying breast cancer metastasis. Our findings suggested that CCGM can be used as a tissue-like 3D model for studying breast cancer metastatic events in vitro.


Assuntos
Técnicas de Cultura de Células/métodos , Colágeno/química , Gelatina/química , Nanofibras/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Caderinas/genética , Caderinas/metabolismo , Adesão Celular/efeitos dos fármacos , Técnicas de Cultura de Células/instrumentação , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal , Estrogênios/farmacologia , Feminino , Humanos , Células MCF-7 , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Nanofibras/toxicidade , Metástase Neoplásica , Progesterona/farmacologia
2.
Cytotechnology ; 68(5): 1747-61, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26511364

RESUMO

The present study investigates the impact of biomolecules (biotin, glucose, chondroitin sulphate, proline) as supplement, (individual and in combination) on primary human meniscus cell proliferation. Primary human meniscus cells isolated from patients undergoing meniscectomy were maintained in Dulbecco's Modified Eagle's Medium (DMEM). The isolated cells were treated with above mentioned biomolecules as individual (0-100 µg/ml) and in combinations, as a supplement to DMEM. Based on the individual biomolecule study, a unique combination of biomolecules (UCM) was finalized using one way ANOVA analysis. With the addition of UCM as supplement to DMEM, meniscal cells reached 100 % confluency within 4 days in 60 mm culture plate; whereas the cells in medium devoid of UCM, required 36 days for reaching confluency. The impact of UCM on cell viability, doubling time, histology, gene expression, biomarkers expression, extra cellular matrix synthesis, meniscus cell proliferation with respect to passages and donor's age were investigated. The gene expression studies for E-cadherin and peroxisome proliferator-activated receptor (PPAR∆) using RT-qPCR and immunohistochemical analysis for Ki67, CD34 and Vimentin confirmed that UCM has significant impact on cell proliferation. The extracellular collagen and glycosaminoglycan secretion in cells supplemented with UCM were found to increase by 31 and 37 fold respectively, when compared to control on the 4th day. The cell doubling time was reduced significantly when supplemented with UCM. The addition of UCM showed positive influence on different passages and age groups. Hence, this optimized UCM can be used as an effective supplement for meniscal tissue engineering.

3.
J Membr Biol ; 247(1): 35-43, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24193717

RESUMO

In the present study, we prepared a gelatin nanofiber matrix using an electrospinning technique and cross-linked the nanofibers with 10 % glutaraldehyde vapors. The insoluble nanofibers were functionalized with bioactive molecules like biotin (1 %) and galactose (1 %) by adsorption and coelectrospinning. Surface morphology and fiber dimension were analyzed using atomic force microscopy. The amounts of biotin and galactose bound to the nanofibers before and after adsorption were quantified using high-performance liquid chromatography. Human larynx carcinoma (HEp-2) cell attachment, morphology and cytotoxic characteristics were studied using crystal violet staining and the MTT assay. Cell attachment and viability were highest in biotin- and galactose-embedded nanofibers compared to native nanofibers. Cytotoxicity was less with biotin- and galactose-embedded and adsorbed nanofibers compared to control nanofibers. Hence, we suggest that these biocompatible, nontoxic, biodegradable, functionalized nanofibers could be a potential candidate for application in tissue engineering and scaffold preparation.


Assuntos
Biotina/química , Galactose/química , Gelatina/química , Nanofibras/química , Nanofibras/toxicidade , Adsorção , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Nanofibras/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA