Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Entropy (Basel) ; 24(8)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36010758

RESUMO

In this paper, we propose a compression-based anomaly detection method for time series and sequence data using a pattern dictionary. The proposed method is capable of learning complex patterns in a training data sequence, using these learned patterns to detect potentially anomalous patterns in a test data sequence. The proposed pattern dictionary method uses a measure of complexity of the test sequence as an anomaly score that can be used to perform stand-alone anomaly detection. We also show that when combined with a universal source coder, the proposed pattern dictionary yields a powerful atypicality detector that is equally applicable to anomaly detection. The pattern dictionary-based atypicality detector uses an anomaly score defined as the difference between the complexity of the test sequence data encoded by the trained pattern dictionary (typical) encoder and the universal (atypical) encoder, respectively. We consider two complexity measures: the number of parsed phrases in the sequence, and the length of the encoded sequence (codelength). Specializing to a particular type of universal encoder, the Tree-Structured Lempel-Ziv (LZ78), we obtain a novel non-asymptotic upper bound, in terms of the Lambert W function, on the number of distinct phrases resulting from the LZ78 parser. This non-asymptotic bound determines the range of anomaly score. As a concrete application, we illustrate the pattern dictionary framework for constructing a baseline of health against which anomalous deviations can be detected.

2.
Brief Bioinform ; 22(1): 247-269, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-31950972

RESUMO

The task of predicting the interactions between drugs and targets plays a key role in the process of drug discovery. There is a need to develop novel and efficient prediction approaches in order to avoid costly and laborious yet not-always-deterministic experiments to determine drug-target interactions (DTIs) by experiments alone. These approaches should be capable of identifying the potential DTIs in a timely manner. In this article, we describe the data required for the task of DTI prediction followed by a comprehensive catalog consisting of machine learning methods and databases, which have been proposed and utilized to predict DTIs. The advantages and disadvantages of each set of methods are also briefly discussed. Lastly, the challenges one may face in prediction of DTI using machine learning approaches are highlighted and we conclude by shedding some lights on important future research directions.


Assuntos
Biologia Computacional/métodos , Descoberta de Drogas/métodos , Aprendizado de Máquina , Bases de Dados Factuais , Humanos
3.
IEEE J Biomed Health Inform ; 25(3): 784-796, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32750956

RESUMO

Acute respiratory distress syndrome (ARDS) is a fulminant inflammatory lung injury that develops in patients with critical illnesses, affecting 200,000 patients in the United States annually. However, a recent study suggests that most patients with ARDS are diagnosed late or missed completely and fail to receive life-saving treatments. This is primarily due to the dependency of current diagnosis criteria on chest x-ray, which is not necessarily available at the time of diagnosis. In machine learning, such an information is known as Privileged Information - information that is available at training but not at testing. However, in diagnosing ARDS, privileged information (chest x-rays) are sometimes only available for a portion of the training data. To address this issue, the Learning Using Partially Available Privileged Information (LUPAPI) paradigm is proposed. As there are multiple ways to incorporate partially available privileged information, three models built on classical SVM are described. Another complexity of diagnosing ARDS is the uncertainty in clinical interpretation of chest x-rays. To address this, the LUPAPI framework is then extended to incorporate label uncertainty, resulting in a novel and comprehensive machine learning paradigm - Learning Using Label Uncertainty and Partially Available Privileged Information (LULUPAPI). The proposed frameworks use Electronic Health Record (EHR) data as regular information, chest x-rays as partially available privileged information, and clinicians' confidence levels in ARDS diagnosis as a measure of label uncertainty. Experiments on an ARDS dataset demonstrate that both the LUPAPI and LULUPAPI models outperform SVM, with LULUPAPI performing better than LUPAPI.


Assuntos
Síndrome do Desconforto Respiratório , Humanos , Aprendizado de Máquina , Radiografia , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Incerteza , Estados Unidos
5.
BMC Med Imaging ; 20(1): 116, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33059612

RESUMO

BACKGROUND: This study outlines an image processing algorithm for accurate and consistent lung segmentation in chest radiographs of critically ill adults and children typically obscured by medical equipment. In particular, this work focuses on applications in analysis of acute respiratory distress syndrome - a critical illness with a mortality rate of 40% that affects 200,000 patients in the United States and 3 million globally each year. METHODS: Chest radiographs were obtained from critically ill adults (n = 100), adults diagnosed with acute respiratory distress syndrome (ARDS) (n = 25), and children (n = 100) hospitalized at Michigan Medicine. Physicians annotated the lung field of each radiograph to establish the ground truth. A Total Variation-based Active Contour (TVAC) lung segmentation algorithm was developed and compared to multiple state-of-the-art methods including a deep learning model (U-Net), a random walker algorithm, and an active spline model, using the Sørensen-Dice coefficient to measure segmentation accuracy. RESULTS: The TVAC algorithm accurately segmented lung fields in all patients in the study. For the adult cohort, an averaged Dice coefficient of 0.86 ±0.04 (min: 0.76) was reported for TVAC, 0.89 ±0.12 (min: 0.01) for U-Net, 0.74 ±0.19 (min: 0.15) for the random walker algorithm, and 0.64 ±0.17 (min: 0.20) for the active spline model. For the pediatric cohort, a Dice coefficient of 0.85 ±0.04 (min: 0.75) was reported for TVAC, 0.87 ±0.09 (min: 0.56) for U-Net, 0.67 ±0.18 (min: 0.18) for the random walker algorithm, and 0.61 ±0.18 (min: 0.18) for the active spline model. CONCLUSION: The proposed algorithm demonstrates the most consistent performance of all segmentation methods tested. These results suggest that TVAC can accurately identify lung fields in chest radiographs in critically ill adults and children.


Assuntos
Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Radiografia Torácica/métodos , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Adolescente , Adulto , Idoso , Algoritmos , Criança , Pré-Escolar , Aprendizado Profundo , Feminino , Hospitalização , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Adulto Jovem
6.
Artigo em Inglês | MEDLINE | ID: mdl-32864419

RESUMO

Pulse oximetry is a noninvasive and low-cost physiological monitor that measures blood oxygen levels. While the noninvasive nature of pulse oximetry is advantageous, the estimates of oxygen saturation generated by these devices are prone to motion artifacts and ambient noise, reducing the reliability of such estimations. Clinicians combat this by assessing the quality of oxygen saturation estimation by visual inspection of the photoplethysmograph (PPG), which represents changes in pulsatile blood volume and is also generated by the pulse oximeter. In this paper, we propose six morphological features that can be used to determine the quality of the PPG signal and generate a signal quality index. Unlike many similar studies, this approach uses machine learning and does not require a separate signal, such as ECG, for reference. Multiple algorithms were tested against 46 30-min PPG segments of patients with cardiovascular and respiratory conditions, including atrial fibrillation, hypoxia, acute heart failure, pneumonia, ARDS, and pulmonary embolism. These signals were independently annotated for signal quality by two clinicians, with the union of their annotations used as the ground-truth. Similar to any physiological signal recorded in a clinical setting, the utilized dataset is also unbalanced in favor of good quality segments. The experiments showed that a cost-sensitive Support Vector Machine (SVM) outperformed other tested methods and was robust to the unbalanced nature of the data. Though the proposed algorithm was tested on PPG signals, the methodology remains agnostic to the dataset used, and may be applied to any type of pulsatile physiological signal.

7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 1717-1720, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31946228

RESUMO

Acute respiratory distress syndrome (ARDS) is a fulminant inflammatory lung injury that develops in patients with critical illnesses including sepsis, pneumonia, and trauma. However, many patients with ARDS are not recognized when they develop this syndrome nor given outcome-improving treatments. Because ARDS is a clinical syndrome, physicians may not be certain about a patient's diagnosis (label uncertainty). In addition, the diagnosis requires a chest x-ray, which may not be always be available in a clinical setting (privileged information). For this paper, we implemented the Learning Using Label Uncertainty and Partially Available Privileged Information (LULUPAPI) paradigm, built on classical SVM, to detect ARDS using Electronic Health Record (EHR) data and chest radiography. In comparison to SVM, this resulted in a 3.55 percent improvement of test AUC.


Assuntos
Lesão Pulmonar , Pneumonia , Síndrome do Desconforto Respiratório , Sepse , Humanos , Incerteza
8.
Entropy (Basel) ; 21(3)2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33266935

RESUMO

The aim of using atypicality is to extract small, rare, unusual and interesting pieces out of big data. This complements statistics about typical data to give insight into data. In order to find such "interesting" parts of data, universal approaches are required, since it is not known in advance what we are looking for. We therefore base the atypicality criterion on codelength. In a prior paper we developed the methodology for discrete-valued data, and the current paper extends this to real-valued data. This is done by using minimum description length (MDL). We develop the information-theoretic methodology for a number of "universal" signal processing models, and finally apply them to recorded hydrophone data and heart rate variability (HRV) signal.

9.
Entropy (Basel) ; 21(5)2019 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33267156

RESUMO

Fibromyalgia is a medical condition characterized by widespread muscle pain and tenderness and is often accompanied by fatigue and alteration in sleep, mood, and memory. Poor sleep quality and fatigue, as prominent characteristics of fibromyalgia, have a direct impact on patient behavior and quality of life. As such, the detection of extreme cases of sleep quality and fatigue level is a prerequisite for any intervention that can improve sleep quality and reduce fatigue level for people with fibromyalgia and enhance their daytime functionality. In this study, we propose a new supervised machine learning method called Learning Using Concave and Convex Kernels (LUCCK). This method employs similarity functions whose convexity or concavity can be configured so as to determine a model for each feature separately, and then uses this information to reweight the importance of each feature proportionally during classification. The data used for this study was collected from patients with fibromyalgia and consisted of blood volume pulse (BVP), 3-axis accelerometer, temperature, and electrodermal activity (EDA), recorded by an Empatica E4 wristband over the courses of several days, as well as a self-reported survey. Experiments on this dataset demonstrate that the proposed machine learning method outperforms conventional machine learning approaches in detecting extreme cases of poor sleep and fatigue in people with fibromyalgia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA