Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cancer Res Commun ; 2(3): 131-145, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36466034

RESUMO

Targeting the human epidermal growth factor receptor 2 (HER2) became a landmark in the treatment of HER2-driven breast cancer. Nonetheless, the clinical efficacy of anti-HER2 therapies can be short-lived and a significant proportion of patients ultimately develop metastatic disease and die. One striking consequence of oncogenic activation of HER2 in breast cancer cells is the constitutive activation of the extracellular-regulated protein kinase 5 (ERK5) through its hyperphosphorylation. In this study, we sought to decipher the significance of this unique molecular signature in promoting therapeutic resistance to anti-HER2 agents. We found that a small-molecule inhibitor of ERK5 suppressed the phosphorylation of the retinoblastoma protein (RB) in HER2 positive breast cancer cells. As a result, ERK5 inhibition enhanced the anti-proliferative activity of single-agent anti-HER2 therapy in resistant breast cancer cell lines by causing a G1 cell cycle arrest. Moreover, ERK5 knockdown restored the anti-tumor activity of the anti-HER2 agent lapatinib in human breast cancer xenografts. Taken together, these findings support the therapeutic potential of ERK5 inhibitors to improve the clinical benefit that patients receive from targeted HER2 therapies.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Antineoplásicos/farmacologia , Proteínas Quinases/uso terapêutico , Quinazolinas/farmacologia , Ciclo Celular
2.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34725165

RESUMO

Here, we study the dynamical expression of endogenously labeled Hes1, a transcriptional repressor implicated in controlling cell proliferation, to understand how cell-cycle length heterogeneity is generated in estrogen receptor (ER)+ breast cancer cells. We find that Hes1 shows oscillatory expression with ∼25 h periodicity and during each cell cycle has a variable peak in G1, a trough around G1-S transition, and a less variable second peak in G2/M. Compared to other subpopulations, the cell cycle in CD44HighCD24Low cancer stem cells is longest and most variable. Most cells divide around the peak of the Hes1 expression wave, but preceding mitoses in slow dividing CD44HighCD24Low cells appear phase-shifted, resulting in a late-onset Hes1 peak in G1. The position, duration, and shape of this peak, rather than the Hes1 expression levels, are good predictors of cell-cycle length. Diminishing Hes1 oscillations by enforcing sustained expression slows down the cell cycle, impairs proliferation, abolishes the dynamic expression of p21, and increases the percentage of CD44HighCD24Low cells. Reciprocally, blocking the cell cycle causes an elongation of Hes1 periodicity, suggesting a bidirectional interaction of the Hes1 oscillator and the cell cycle. We propose that Hes1 oscillations are functionally important for the efficient progression of the cell cycle and that the position of mitosis in relation to the Hes1 wave underlies cell-cycle length heterogeneity in cancer cell subpopulations.


Assuntos
Neoplasias da Mama/metabolismo , Ciclo Celular , Ritmo Circadiano , Receptores de Estrogênio/metabolismo , Fatores de Transcrição HES-1/metabolismo , Humanos , Células MCF-7 , Células-Tronco Neoplásicas/fisiologia
3.
iScience ; 24(10): 103198, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34703994

RESUMO

Quiescence is a dynamic process of reversible cell cycle arrest. High-level persistent expression of the HES1 transcriptional repressor, which oscillates with an ultradian periodicity in proliferative neural stem cells (NSCs), is thought to mediate quiescence. However, it is not known whether this is due to a change in levels or dynamics. Here, we induce quiescence in embryonic NSCs with BMP4, which does not increase HES1 level, and we find that HES1 continues to oscillate. To assess the role of HES1 dynamics, we express persistent HES1 under a moderate strength promoter, which overrides the endogenous oscillations while maintaining the total HES1 level within physiological range. We find that persistent HES1 does not affect proliferation or entry into quiescence; however, exit from quiescence is impeded. Thus, oscillatory expression of HES1 is specifically required for NSCs to exit quiescence, a finding of potential importance for controlling reactivation of stem cells in tissue regeneration and cancer.

4.
Dev Cell ; 31(5): 559-71, 2014 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-25490266

RESUMO

During the development of the nervous system, apicobasally polarized stem cells are characterized by a shorter cell cycle than nonpolar progenitors, leading to a lower differentiation potential of these cells. However, how polarization might be directly linked to the kinetics of the cell cycle is not understood. Here, we report that apicobasally polarized neuroepithelial cells in Xenopus laevis have a shorter cell cycle than nonpolar progenitors, consistent with mammalian systems. We show that the apically localized serine/threonine kinase aPKC directly phosphorylates an N-terminal site of the cell-cycle inhibitor p27Xic1 and reduces its ability to inhibit the cyclin-dependent kinase 2 (Cdk2), leading to shortening of G1 and S phases. Overexpression of activated aPKC blocks the neuronal differentiation-promoting activity of p27Xic1. These findings provide a direct mechanistic link between apicobasal polarity and the cell cycle, which may explain how proliferation is favored over differentiation in polarized neural stem cells.


Assuntos
Pontos de Checagem do Ciclo Celular/fisiologia , Polaridade Celular/fisiologia , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Proteína Quinase C/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Quinase 2 Dependente de Ciclina/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Xenopus laevis
5.
Development ; 140(21): 4311-22, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24067354

RESUMO

During mouse pre-implantation development, extra-embryonic primitive endoderm (PrE) and pluripotent epiblast precursors are specified in the inner cell mass (ICM) of the early blastocyst in a 'salt and pepper' manner, and are subsequently sorted into two distinct layers. Positional cues provided by the blastocyst cavity are thought to be instrumental for cell sorting; however, the sequence of events and the mechanisms that control this segregation remain unknown. Here, we show that atypical protein kinase C (aPKC), a protein associated with apicobasal polarity, is specifically enriched in PrE precursors in the ICM prior to cell sorting and prior to overt signs of cell polarisation. aPKC adopts a polarised localisation in PrE cells only after they reach the blastocyst cavity and form a mature epithelium, in a process that is dependent on FGF signalling. To assess the role of aPKC in PrE formation, we interfered with its activity using either chemical inhibition or RNAi knockdown. We show that inhibition of aPKC from the mid blastocyst stage not only prevents sorting of PrE precursors into a polarised monolayer but concomitantly affects the maturation of PrE precursors. Our results suggest that the processes of PrE and epiblast segregation, and cell fate progression are interdependent, and place aPKC as a central player in the segregation of epiblast and PrE progenitors in the mouse blastocyst.


Assuntos
Massa Celular Interna do Blastocisto/citologia , Blastocisto/enzimologia , Blastocisto/fisiologia , Células-Tronco Embrionárias/metabolismo , Endoderma/fisiologia , Proteína Quinase C/metabolismo , Animais , Linhagem da Célula/fisiologia , Polaridade Celular/fisiologia , Primers do DNA/genética , Endoderma/citologia , Fatores de Crescimento de Fibroblastos/metabolismo , Imunofluorescência , Processamento de Imagem Assistida por Computador , Camundongos , Microscopia Confocal , Proteína Quinase C/genética , Interferência de RNA
6.
Essays Biochem ; 53: 95-109, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22928511

RESUMO

Cell polarization and cell division are two fundamental cellular processes. The mechanisms that establish and maintain cell polarity and the mechanisms by which cells progress through the cell cycle are now fairly well understood following decades of experimental work. There is also increasing evidence that the polarization state of a cell affects its proliferative properties. The challenge now is to understand how these two phenomena are mechanistically connected. The aim of the present chapter is to provide an overview of the evidence of cross-talk between apicobasal polarity and proliferation, and the current state of knowledge of the precise mechanism by which this cross-talk is achieved.


Assuntos
Polaridade Celular , Proliferação de Células , Neurogênese , Animais , Transdução de Sinais
7.
Development ; 138(24): 5451-8, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22110059

RESUMO

As studies aim increasingly to understand key, evolutionarily conserved properties of biological systems, the ability to move transgenesis experiments efficiently between organisms becomes essential. DNA constructions used in transgenesis usually contain four elements, including sequences that facilitate transgene genome integration, a selectable marker and promoter elements driving a coding gene. Linking these four elements in a DNA construction, however, can be a rate-limiting step in the design and creation of transgenic organisms. In order to expedite the construction process and to facilitate cross-species collaborations, we have incorporated the four common elements of transgenesis into a modular, recombination-based cloning system called pTransgenesis. Within this framework, we created a library of useful coding sequences, such as various fluorescent protein, Gal4, Cre-recombinase and dominant-negative receptor constructs, which are designed to be coupled to modular, species-compatible selectable markers, promoters and transgenesis facilitation sequences. Using pTransgenesis in Xenopus, we demonstrate Gal4-UAS binary expression, Cre-loxP-mediated fate-mapping and the establishment of novel, tissue-specific transgenic lines. Importantly, we show that the pTransgenesis resource is also compatible with transgenesis in Drosophila, zebrafish and mammalian cell models. Thus, the pTransgenesis resource fosters a cross-model standardization of commonly used transgenesis elements, streamlines DNA construct creation and facilitates collaboration between researchers working on different model organisms.


Assuntos
Animais Geneticamente Modificados/genética , Biblioteca Gênica , Técnicas de Transferência de Genes , Animais , Drosophila/genética , Integrases/metabolismo , Fatores de Transcrição/genética , Transgenes , Xenopus/genética , Peixe-Zebra/genética
8.
Development ; 136(16): 2767-77, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19633170

RESUMO

During neurogenesis in Xenopus, apicobasally polarised superficial and non-polar deep cells take up different fates: deep cells become primary neurons while superficial cells stay as progenitors. It is not known whether the proteins that affect cell polarity also affect cell fate and how membrane polarity information may be transmitted to the nucleus. Here, we examine the role of the polarity components, apically enriched aPKC and basolateral Lgl2, in primary neurogenesis. We report that a membrane-tethered form of aPKC (aPKC-CAAX) suppresses primary neurogenesis and promotes cell proliferation. Unexpectedly, both endogenous aPKC and aPKC-CAAX show some nuclear localisation. A constitutively active aPKC fused to a nuclear localisation signal has the same phenotypic effect as aPKC-CAAX in that it suppresses neurogenesis and enhances proliferation. Conversely, inhibiting endogenous aPKC with a dominant-negative form that is restricted to the nucleus enhances primary neurogenesis. These observations suggest that aPKC has a function in the nucleus that is important for cell fate specification during primary neurogenesis. In a complementary experiment, overexpressing basolateral Lgl2 causes depolarisation and internalisation of superficial cells, which form ectopic neurons when supplemented with a proneural factor. These findings suggest that both aPKC and Lgl2 affect cell fate, but that aPKC is a nuclear determinant itself that might shuttle from the membrane to the nucleus to control cell proliferation and fate; loss of epithelial cell polarity by Lgl2 overexpression changes the position of the cells and is permissive for a change in cell fate.


Assuntos
Núcleo Celular/fisiologia , Proliferação de Células , Neurogênese/fisiologia , Proteína Quinase C/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , beta Carioferinas/metabolismo , Motivos de Aminoácidos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biomarcadores/metabolismo , Polaridade Celular , Células HeLa , Humanos , Hibridização In Situ , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Proteína Quinase C/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Tubulina (Proteína)/metabolismo , Proteínas de Xenopus/genética , beta Carioferinas/genética
9.
Hum Mol Genet ; 16(2): 210-22, 2007 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17200153

RESUMO

Defects in long-range regulatory elements have recently emerged as previously underestimated factors in the genesis of human congenital disorders. Léri-Weill dyschondrosteosis is a dominant skeletal malformation syndrome caused by mutations in the short stature homeobox gene SHOX. We have analysed four families with Léri-Weill dyschondrosteosis with deletions in the pseudoautosomal region but still with an intact SHOX coding region. Using fluorescence in situ hybridization and single nucleotide polymorphism studies, we identified an interval of approximately 200 kb that was deleted in all tested affected family members but retained in the unaffected members and in 100 control individuals. Comparative genomic analysis of this interval revealed eight highly conserved non-genic elements between 48 and 215 kb downstream of the SHOX gene. As mice do not have a Shox gene, we analysed the enhancer potential in chicken embryos using a green fluorescent protein reporter construct driven by the beta-globin promoter, by in ovo electroporation of the limb bud. We observed cis-regulatory activity in three of the eight non-genic elements in the developing limbs arguing for an extensive control region of this gene. These findings are consistent with the idea that the deleted region in the affected families contains several distinct elements that regulate Shox expression in the developing limb. Furthermore, the deletion of these elements in humans generates a phenotype apparently undistinguishable to those patients identified with mutations in the SHOX coding region and, for the first time, demonstrates the potential of an in vivo assay in chicken to monitor putative enhancer activity in relation to human disease.


Assuntos
Anormalidades Múltiplas/genética , Sequência Conservada/genética , DNA Intergênico/genética , Regulação da Expressão Gênica , Membro Posterior/metabolismo , Proteínas de Homeodomínio/genética , Osteocondrodisplasias/genética , Deleção de Sequência/genética , Adolescente , Adulto , Idoso , Animais , Sequência de Bases , Estatura/genética , Embrião de Galinha , Criança , Mapeamento Cromossômico , Análise Mutacional de DNA , Primers do DNA , Eletroporação , Feminino , Componentes do Gene , Genômica/métodos , Membro Posterior/embriologia , Humanos , Hibridização in Situ Fluorescente , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Proteína de Homoeobox de Baixa Estatura , Síndrome
10.
Am J Hum Genet ; 77(1): 89-96, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15931595

RESUMO

Human growth is influenced not only by environmental and internal factors but also by a large number of different genes. One of these genes, SHOX, is believed to play a major role in growth, since defects in this homeobox-containing gene on the sex chromosomes lead to syndromal short stature (Leri-Weill dyschondrosteosis, Langer mesomelic dysplasia, and Turner syndrome) as well as to idiopathic short stature. We have analyzed 118 unrelated patients with Leri-Weill dyschondrosteosis and >1,500 patients with idiopathic short stature for deletions encompassing SHOX. Deletions were detected in 34% of the patients with Leri-Weill dyschondrosteosis and in 2% of the patients with idiopathic short stature. For 27 patients with Leri-Weill dyschondrosteosis and for 6 with idiopathic short stature, detailed deletion mapping was performed. Analysis was performed by polymerase chain reaction with the use of pseudoautosomal polymorphic markers and by fluorescence in situ hybridization with the use of cosmid clones. Here, we show that, although the identified deletions vary in size, the vast majority (73%) of patients tested share a distinct proximal deletion breakpoint. We propose that the sequence present within this proximal deletion breakpoint "hotspot" region predisposes to recurrent breaks.


Assuntos
Deleção de Genes , Transtornos do Crescimento/genética , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Deleção Cromossômica , Humanos , Hibridização In Situ , Repetições de Microssatélites , Osteocondrodisplasias/genética , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Recombinação Genética , Proteína de Homoeobox de Baixa Estatura
11.
Hum Mutat ; 26(1): 44-52, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15931687

RESUMO

Haploinsufficiency of the short stature homeobox gene SHOX has been found in patients with idiopathic short stature (ISS) and Leri-Weill dyschondrosteosis (LWD). In addition to complete gene deletions and nonsense mutations, several missense mutations have been identified in both patient groups, leading to amino acid substitutions in the SHOX protein. The majority of missense mutations were found to accumulate in the region encoding the highly conserved homeodomain of the paired-like type. In this report, we investigated nine different amino acid exchanges in the homeodomain of SHOX patients with ISS and LWD. We were able show that these mutations cause an alteration of the biological function of SHOX by loss of DNA binding, reduced dimerization ability, and/or impaired nuclear translocation. Additionally, one of the mutations (c.458G>T, p.R153L) is defective in transcriptional activation even though it is still able to bind to DNA, dimerize, and translocate to the nucleus. Thus, we demonstrate that single missense mutations in the homeodomain fundamentally impair SHOX key functions, thereby leading to the phenotype observed in patients with LWD and ISS.


Assuntos
Estatura/genética , Núcleo Celular/metabolismo , DNA/metabolismo , Transtornos do Crescimento/genética , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/metabolismo , Mutação/genética , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Ciclo Celular , Dimerização , Genes Homeobox/genética , Proteínas de Homeodomínio/genética , Humanos , Dados de Sequência Molecular , Mutação de Sentido Incorreto/genética , Proteína de Homoeobox de Baixa Estatura , Fatores de Transcrição/genética , Ativação Transcricional
12.
J Cell Sci ; 117(Pt 14): 3041-8, 2004 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-15173321

RESUMO

We report the characterization of the nuclear localization signal (NLS) of the short stature homeobox gene SHOX. Mutations within the SHOX gene cause Léri-Weill dyschondrosteosis (LWD) and Langer mesomelic dysplasia (LD) as well as idiopathic short stature (ISS). Furthermore, haploinsufficiency of SHOX has also been implicated in Turner syndrome. SHOX has been shown to be a cell-type-specific transcriptional activator that localizes to the nucleus. The SHOX protein contains a central homeodomain that together with its transactivation domain regulates the transcription of its target sequences within the nucleus. The sequences for its nuclear localization have not been identified yet. Experimental characterization of SHOX-NLS by deletion mapping identified a non-classic type basic signal, AKCRK, in the recognition helix of the homeodomain. Fusion of this stretch of five amino acids to a cytoplasmic reporter protein resulted in its nuclear translocation. Functional analysis of a missense mutation R173C (C517T) affecting the identified SHOX-NLS in two families with LWS and LD showed that the mutated SHOX protein is unable to enter the nucleus. Conversely, we can demonstrate that insertion of the identified signal adjacent to the mutant site can restore its nuclear translocation. These results establish impairment of nuclear localization as a mechanistic basis for SHOX-related diseases.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Homeodomínio/metabolismo , Sinais de Localização Nuclear , Sequência de Aminoácidos , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/genética , Análise Mutacional de DNA , Ligação Genética , Proteínas de Homeodomínio/genética , Humanos , Imuno-Histoquímica , Dados de Sequência Molecular , Osteocondrodisplasias/genética , Homologia de Sequência de Aminoácidos , Proteína de Homoeobox de Baixa Estatura , Síndrome , Síndrome de Turner/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA