Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1124970, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36960279

RESUMO

Among the different compounds present in the must, nitrogen is an essential nutrient for the management of fermentation kinetics, also playing a major role in the synthesis of fermentative aromas. Fermentation temperature is yet another variable that affects fermentation duration and the production of fermentative aromas in wine. The main objective of this study was thus to evaluate the combined effects of nitrogen addition-at the start of the fermentation process or during the stationary phase-at different fermentation temperatures on both fermentation kinetics and aroma synthesis kinetics. To study the impact of these three parameters simultaneously, we used an innovative transdisciplinary approach associating an online GC-MS system with an original modeling approach: a Box-Behnken experimental design combined with response surface modeling and GAM modeling. Our results indicated that all three factors studied had significant effects on fermentation and aroma production kinetics. These parameters did not impact in the same way the different families of volatile compounds. At first, obtained data showed that reduction of ester accumulation in the liquid phase at high temperature was mainly due to important losses by evaporation but also to modifications of yeast metabolic capabilities to synthetize these compounds. In a noticeable way, optimal temperature changed for liquid accumulation of the two classes of esters-23°C for acetate ester and 18°C for ethyl esters-because biological impact of temperature was different for the two chemical families. Moreover, the study of these three factors simultaneously allowed us to show that propanol is not only a marker of the presence of assimilable nitrogen in the medium but above all a marker of cellular activity. Finally, this work enabled us to gain a deeper understanding of yeast metabolism regulation. It also underlines the possibility to refine the organoleptic profile of a wine by targeting the ideal combination of fermentation temperature with initial and added nitrogen concentrations. Such observation was particularly true for isoamyl acetate for which interactions between the three factors were very strong.

2.
Food Microbiol ; 111: 104193, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36681397

RESUMO

Although the impact of nitrogen nutrition on the production of fermentative aromas in oenological fermentation is well known today, one may wonder whether the effects studied are the same when winemaking takes place at high turbidities, specifically for the production of wines intended for cognac distillation. To that effect, a fermentation robot was used to analyze 30 different fermentation conditions at two turbidity levels with several factors tested: (i) initial addition of nitrogen either organic (with a mixture of amino acids - MixAA) or inorganic with di-ammonium phosphate (DAP) at different concentrations, (ii) variation of the ratio of inorganic/organic nitrogen (MixAA and DAP) and (iii) addition of different single amino acids (alanine, arginine, aspartic acid and glutamic acid). A metabolomic analysis was carried out on all resulting wines to have a global vision of the impact of nitrogen on more than sixty aromatic molecules of various families. Then, at the end of the alcoholic fermentation, the wines were micro-distilled. A first interesting observation was that the aroma profiles of both wines and distillates were close, indicating that the concentration factor is rather similar for the different aromas studied. Secondly, the fermentation kinetics and aroma results have shown that the nitrogen concentration effect prevailed over the nature of nitrogen. Although the lipid concentration was in excess, an interaction between the assimilable nitrogen and lipid contents was still observed in wines or in micro-distillates. Alanine is involved in the synthesis of acetaldehyde, isobutanol, isoamyl alcohol and isoamyl acetate. Finally, it was demonstrated that modifying the ratio of assimilable nitrogen in musts is not an interesting technological response to improve the aromatic profile of wines and brandies. Indeed, unbalance the physiological ratio of the must by adding a single source of assimilable nitrogen (organic or inorganic) has been shown to deregulate the synthesis of most of the fermentation aromas produced by the yeast. Wine metabolomic analysis confirmed the results that had been observed in micro-distillates but also in the other aromatic families, especially on terpenes. The contribution of solid particles, but also yeast biosynthesis (via sterol management in must) to wine terpenes is discussed. Indeed, the synthesis of terpenes in this oenological context seems to be favored, especially since the concentration of assimilable nitrogen (in addition to the lipid content) favor their accumulation in the medium. A non-negligible vintage effect on the terpene profile was also demonstrated with variations in their distribution depending on the years. Thus, the present study focuses on the metabolism of wine yeasts under different environmental conditions (nitrogen and lipid content) and on the impact of distillation on the fate of flavor compounds. The results highlight once again the complexity of metabolic fluxes and of the impact of nitrogen source (nature and amount) and of lipids. Furthermore, this study demonstrates that beyond the varietal origin of terpenes, the part resulting from the de novo synthesis by the yeast during the fermentation cannot be neglected in the context of cognac winemaking with high levels of turbidity.


Assuntos
Vitis , Vinho , Humanos , Vinho/análise , Vitis/química , Saccharomyces cerevisiae/metabolismo , Nitrogênio/metabolismo , Odorantes/análise , Aminoácidos/metabolismo , Fermentação , Lipídeos , Terpenos/análise , Terpenos/metabolismo , Alanina/análise , Alanina/metabolismo
3.
Front Microbiol ; 13: 829786, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35273585

RESUMO

Among the different compounds present in the must, nitrogen is an essential nutrient for the management of fermentation kinetics but also plays an important role in the synthesis of fermentative aromas. To address the problems related to nitrogen deficiencies, nitrogen additions during alcoholic fermentation have been implemented. The consequences of such additions on the main reaction are well known. However, their impact on aromas synthesis is still poorly understood. So, the main objective of this study was to determine the impact of nitrogen addition during the stationary phase on both the fermentation kinetics and aroma synthesis. To reach this goal, we used a transdisciplinary approach combining statistical modeling (Box-Behnken design and response surface modeling) and gene expression study (transcriptomic analysis). Our results indicated that nitrogen metabolism, central carbon metabolism (CCM), fermentation kinetics and aroma production were significantly impacted by nitrogen addition. The most remarkable point was the different regulation of the bioconversion of higher alcohols into acetate esters on one hand and of fatty acids into ethyl esters on the other hand. We highlighted that the conversion of higher alcohols into acetate esters was maximum when nitrogen was added at the beginning of the stationary phase. Conversely, the highest conversion of acids into ethyl esters was reached when nitrogen was added close to the end of the stationary phase. Moreover, even if the key element in the production of these two ester families appeared to be the enzymatic activity responsible for their production, rather than the availability of the corresponding precursors, these enzymatic activities were differently regulated. For acetate esters, the regulation occurred at gene level: the ATF2 gene was overexpressed following nitrogen addition during the stationary phase. On the opposite, no induction of gene expression was noted for ethyl esters; it seemed that there was an allosteric regulation.

4.
Appl Microbiol Biotechnol ; 105(16-17): 6435-6449, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34423410

RESUMO

In Cognac, the musts are rich in grape solids and fermentations are usually run with turbidities ranging between 500 and 1500 NTU (nephelometric turbidity unit). These conditions, considered favourable for generating the desired organoleptic profiles of the final Eaux-de-vies, are unusual in winemaking, and, consequently, their impact on yeast metabolism is poorly understood. This study aims to better describe and understand the synthesis of fermentative aromas in such lipid-excess conditions, while integrating the effect of two other very important parameters: the initial concentration of assimilable nitrogen and the temperature of fermentation. To reach this objective, a Box-Behnken design was implemented to describe and model the simple effects of these factors as well as their interactions. Although the lipid concentration was very high, impacts on the production of fermentative aromas were observed. Indeed, high lipid levels promoted the synthesis of higher alcohols. Observing this effect was surprising because there is no metabolic connection between the anabolic pathways of production of these alcohols and the lipid pathway. This effect may be partly explained by impairment in the activity of alcohol acetyl transferases in the presence of lipids, which catalyse the conversion of higher alcohols into the corresponding esters. Therefore, in this study, the negative impact of turbidity was very significant on acetate esters related to the production of acetyl-CoA, which was the main molecule disturbed by the strong presence of lipids. Finally, and more surprisingly, lipid intake did not impact the synthesis of ethyl esters, which depended on the concentration of exogenous lipids. KEY POINTS: • Innovative work on the fermentation of white wine musts with very high lipid contents. • Precise fermentation management and monitoring in Cognac-making conditions. • Experimental design to study the impact of lipids, assimilable nitrogen and temperature on fermentative aroma synthesis.


Assuntos
Vinho , Etanol , Fermentação , Lipídeos , Odorantes/análise , Vinho/análise
5.
FEMS Yeast Res ; 21(5)2021 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-34191008

RESUMO

Beyond the production of positive aromas during alcoholic fermentation, Saccharomyces cerevisiae metabolism also results in the formation of volatile compounds detrimental to wine quality, including a wide range of volatile sulfur compounds (VSCs). The formation of these VSCs during wine fermentation is strongly variable and depends on biological and environmental factors. First, the comparison of the VSCs profile of 22 S. cerevisiae strains provided a comprehensive overview of the intra-species diversity in VSCs production: according to their genetic background, strains synthetized from 1 to 6 different sulfur molecules, in a 1- to 30-fold concentration range. The impact of fermentation parameters on VSCs production was then investigated. We identified yeast assimilable nitrogen, cysteine, methionine and pantothenic acid contents - but not SO2 content - as the main factors modulating VSCs production. In particular, ethylthioacetate and all the VSCs deriving from methionine catabolism displayed a maximal production at yeast assimilable nitrogen concentrations around 250 mg/L; pantothenic acid had a positive impact on compounds deriving from methionine catabolism through the Ehrlich pathway but a negative one on the production of thioesters. Overall, these results highlight those factors to be taken into account to modulate the formation of negative VSCs and limit their content in wines.


Assuntos
Compostos de Enxofre , Vinho , Fermentação , Metionina , Nitrogênio , Ácido Pantotênico , Saccharomyces cerevisiae/genética , Vinho/análise
6.
Food Res Int ; 136: 109607, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32846627

RESUMO

In this work, we focused on the effect of the initial content of SO2 in synthetic grape juice on yeast metabolism linked to the production of acetaldehyde. Lengthening of the lag phase duration was observed with an increase in the initial SO2 content. Nevertheless, an interesting finding was a threshold value of an initial SO2 content of 30 mg L-1 in the juice led to equilibrium between intracellular SO2 diffusion and SO2 production from the sulfate pool by yeast. The ratios of free and bound acetaldehydes were measured during fermentation, and the maximum accumulation of free acetaldehyde was observed when SO2 concentration equilibrium between diffusion and production was reached in the fermenting juice. Moreover, it was observed that SO2 addition resulted in significant changes in the synthesis of aroma compounds. Production of volatile molecules related to sulfur metabolism (methionol) was changed. But, more surprisingly, synthesis of some volatile carbon compounds (diacetyl, isoamyl alcohol, isobutyl alcohol, phenyl ethanol and their corresponding esters) was also altered because of major disruptions in the NADPH/NADP+ redox equilibrium. Finally, we demonstrated that acetaldehyde bound to SO2 could not be metabolized by the yeast during the time course of fermentation and that only free acetaldehyde could impact metabolism.


Assuntos
Acetaldeído , Vitis , Diacetil , Fermentação , Saccharomyces cerevisiae
7.
Food Microbiol ; 76: 29-39, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30166153

RESUMO

During alcoholic fermentation, many parameters, including the nitrogen composition of the must, can affect aroma production. The aim of this study was to examine the impact of several types of nitrogen sources added at different times during fermentation. Nitrogen was added as ammonium or a mixture of amino acids at the beginning of fermentation or at the start of the stationary phase. These conditions were tested with two Saccharomyces cerevisiae strains that have different nitrogen requirements. The additions systematically reduced the fermentation duration. The aroma production was impacted by both the timing of the addition and the composition of the nitrogen source. Propanol appeared to be a metabolic marker of the presence of assimilable nitrogen in the must. The production of ethyl esters was slightly higher after the addition of any type of nitrogen; the production of higher alcohols other than propanol was unchanged, and acetate esters were overproduced due to the overexpression of the genes ATF1 and ATF2. Finally the parameter affecting the most the synthesis of beneficial aromas was the addition timing: The supply of organic nitrogen at the beginning of the stationary phase was more favorable for the synthesis of beneficial aromas.


Assuntos
Nitrogênio/farmacologia , Odorantes/análise , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Vinho/microbiologia , Acetiltransferases/efeitos dos fármacos , Acetiltransferases/genética , Álcoois/metabolismo , Aminoácidos/metabolismo , Aminoácidos/farmacologia , Compostos de Amônio/metabolismo , Compostos de Amônio/farmacologia , Meios de Cultura/síntese química , Ésteres/metabolismo , Fermentação , Cinética , Nitrogênio/metabolismo , Proteínas/efeitos dos fármacos , Proteínas/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/genética , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Vinho/análise
8.
J Agric Food Chem ; 66(24): 6170-6178, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29786425

RESUMO

Determining the gas-liquid partitioning ( Ki) of acetaldehyde during alcoholic fermentation is an important step in the optimization of fermentation control with the aim of minimizing the accumulation of this compound, which is responsible for the undesired attributes of green apples and fresh-cut grass in wines. In this work, the effects of the main fermentation parameters on the Ki of acetaldehyde were assessed. Ki values were found to be dependent on the temperature and composition of the medium. A nonlinear correlation between the evolution of the Ki and fermentation progress was observed, attributable to the strong retention effect of ethanol at low concentrations, and it was demonstrated that the partitioning of this specific molecule was not influenced by the CO2 production rate. A model was developed that quantifies the Ki of acetaldehyde with a very accurate prediction, as the difference between the observed and predicted values did not exceed 9%.


Assuntos
Acetaldeído/análise , Vinho/análise , Acetaldeído/metabolismo , Etanol/análise , Etanol/metabolismo , Fermentação , Malus/química , Malus/metabolismo , Malus/microbiologia , Saccharomyces cerevisiae/metabolismo
9.
Food Res Int ; 103: 192-199, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29389605

RESUMO

Vicinal diketones produced during wine fermentation influence the organoleptic qualities of wine. Diacetyl and 2,3-pentanedione are well known for their contribution to butter or butterscotch-like flavours. We developed an analysis method to quantify vicinal diketones and their precursors, α-acetolactate and α-acetohydroxybutyrate, under oenological conditions. Five-fold dilution of the sample in a phosphate-citrate buffer (pH7.0) strongly attenuated matrix effects between the beginning and end of alcoholic fermentation and protected the sample from spontaneous precursor decarboxylation. The use of diacetyl-d6 as an internal reference improved precision by eliminating differences in the derivatization and extraction yields between the internal standard and the analytes. We obtained unexpected results for alcoholic fermentation by Saccharomyces cerevisiae using this approach. Indeed, the level of diacetyl and 2,3-pentanedione throughout fermentation were very low. However, we observed a large quantity of both precursors. The production dynamics of α-acetolactate were unconventional and there were two distinct phases of accumulation. The first corresponded to the growth phase, and the second to glucose depletion. There was a rapid decrease of precursor levels at the end of fermentation, but there was still a significant amount of α-acetolactate. The amount of precursor remaining at the end of fermentation constitutes a potential source of diacetyl during wine maturation. α-Acetohydroxybutyrate accumulated during the growth phase followed by a continuous decrease of its concentration during the stationary phase. Residual quantities of α-acetohydroxybutyrate found in wine at the end of fermentation does not constitute a sufficient source of 2,3-pentanedione to affect the aromatic profile.


Assuntos
Fermentação , Microbiologia de Alimentos/métodos , Cetonas/metabolismo , Odorantes/análise , Saccharomyces cerevisiae/metabolismo , Vinho/análise , Vinho/microbiologia , Cromatografia Gasosa-Espectrometria de Massas , Hidroxibutiratos/metabolismo , Lactatos/metabolismo , Pentanonas/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Olfato , Paladar , Fatores de Tempo
10.
Microb Biotechnol ; 10(6): 1649-1662, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28695583

RESUMO

Nitrogen and lipids are key nutrients of grape must that influence the production of fermentative aromas by wine yeast, and we have previously shown that a strong interaction exists between these two nutrients. However, more than 90% of the acids and higher alcohols (and their acetate ester derivatives) were derived from intermediates produced by the carbon central metabolism (CCM). The objective of this study was to determine how variations in nitrogen and lipid resources can modulate the contribution of nitrogen and carbon metabolisms for the production of fermentative aromas. A quantitative analysis of metabolism using 13 C-labelled leucine and valine showed that nitrogen availability affected the part of the catabolism of N-containing compounds, the formation of α-ketoacids from CCM and the redistribution of fluxes around these precursors, explaining the optimum production of higher alcohols occurring at an intermediate nitrogen content. Moreover, nitrogen content modulated the total production of acids and higher alcohols differently, through variations in the redox state of cells. We also demonstrated that the phytosterol content, modifying the intracellular availability of acetyl-CoA, can influence the flux distribution, especially the formation of higher alcohols and the conversion of α-ketoisovalerate to α-ketoisocaproate.


Assuntos
Isótopos de Carbono/química , Aromatizantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Vinho/análise , Isótopos de Carbono/metabolismo , Fermentação , Aromatizantes/análise , Marcação por Isótopo , Leucina/química , Leucina/metabolismo , Saccharomyces cerevisiae/química , Valina/química , Valina/metabolismo , Vitis/metabolismo , Vitis/microbiologia , Vinho/microbiologia
11.
Food Res Int ; 98: 87-94, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28610736

RESUMO

Available nitrogen, lipids, or oxygen are nutrients with major impact on the kinetics of winemaking fermentation. Assimilable nitrogen is usually the growth-limiting nutrient which availability determines the fermentation rate and therefore the fermentation duration. In some particular cases, as in Champagne, grape musts have high available nitrogen content and low turbidity, i.e., below 50 Nephelometric Turbidity Unit (NTU). In the case of low turbidity, the availability of lipids, particularly phytosterols, becomes limiting. In this situation, control of oxygenation, which is necessary for lipid synthesis by yeast, is particularly crucial during fermentation. To mimic and understand these situations, a synthetic medium simulating the average composition of a Champagne must was used. This medium contained phytosterol (mainly ß-sitosterol) concentrations ranging from 0 to 8mg/L corresponding to turbidity between 10 and 90 NTU. Population reached during the stationary phase and the maximum fermentation rate are conditioned by the initial phytosterol concentration determining the amount of nitrogen consumption. An early loss of viability was observed when the lipid concentrations were very low. For example, the viability continuously decreased during the stationary phase to a final value of 50% for an initial phytosterol concentration of 1mg/L. In some fermentations, 10mg/L oxygen were added at the end of the growth phase to combine the effects of initial content of phytosterols in the musts and the de novo synthesis of ergosterol and unsaturated fatty acids induced by oxygen addition. Effect of oxygen supply on the fermentation kinetics was particularly significant for media with low phytosterol contents. For example, the maximum fermentation rate was increased by 1.4-fold and the fermentation time was 70h shorter with oxygen addition in the medium containing 2mg/L of phytosterols. As a consequence of the oxygen supply, for the media containing 3, 5 and 8mg/L of phytosterols, the assimilable nitrogen was completely exhausted and the fermentation kinetics, as well as the final populations and viabilities (greater than 90%), were identical for the 3 conditions. The impacts of the lipid content and additional oxygen on acetate, glycerol and succinate synthesis were also studied. The phytosterols decreased the acetate and increased the succinate synthesis, and oxygenation resulted in a decrease in succinate formation. This work highlights the similarities and differences between the effects of lipids and oxygen on fermentation kinetics and yeast metabolism. This research highlights the need for an optimal combined management of lipid content in the must via turbidity and oxygenation, particularly in nitrogen-rich musts.


Assuntos
Fermentação , Frutas/metabolismo , Lipídeos/análise , Oxigênio , Fitosteróis/metabolismo , Vitis/metabolismo , Vinho , Ácido Acético/metabolismo , Ergosterol/metabolismo , Etanol/metabolismo , Manipulação de Alimentos , Sucos de Frutas e Vegetais/análise , Glicerol/metabolismo , Humanos , Cinética , Nitrogênio/metabolismo , Oxigênio/química , Especificidade da Espécie , Ácido Succínico/metabolismo , Vitis/classificação , Fermento Seco/metabolismo
12.
Microb Cell Fact ; 15: 32, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26861624

RESUMO

BACKGROUND: Fermentative aromas play a key role in the organoleptic profile of young wines. Their production depends both on yeast strain and fermentation conditions. A present-day trend in the wine industry consists in developing new strains with aromatic properties using adaptive evolution approaches. An evolved strain, Affinity™ ECA5, overproducing esters, was recently obtained. In this study, dynamics of nitrogen consumption and of the fermentative aroma synthesis of the evolved and its ancestral strains were compared and coupled with a transcriptomic analysis approach to better understand the metabolic reshaping of Affinity™ ECA5. RESULTS: Nitrogen assimilation was different between the two strains, particularly amino acids transported by carriers regulated by nitrogen catabolite repression. We also observed differences in the kinetics of fermentative aroma production, especially in the bioconversion of higher alcohols into acetate esters. Finally, transcriptomic data showed that the enhanced bioconversion into acetate esters by the evolved strain was associated with the repression of genes involved in sterol biosynthesis rather than an enhanced expression of ATF1 and ATF2 (genes coding for the enzymes responsible for the synthesis of acetate esters from higher alcohols). CONCLUSIONS: An integrated approach to yeast metabolism-combining transcriptomic analyses and online monitoring data-showed differences between the two strains at different levels. Differences in nitrogen source consumption were observed suggesting modifications of NCR in the evolved strain. Moreover, the evolved strain showed a different way of managing the lipid source, which notably affected the production of acetate esters, likely because of a greater availability of acetyl-CoA for the evolved strain.


Assuntos
Metabolismo dos Lipídeos/efeitos dos fármacos , Nitrogênio/farmacologia , Odorantes , Saccharomyces cerevisiae/metabolismo , Vinho/análise , Fermentação/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Nitrogênio/metabolismo , Pentanóis/metabolismo , Análise de Componente Principal , Saccharomyces cerevisiae/genética , Fatores de Tempo , Compostos Orgânicos Voláteis/análise
13.
J Agric Food Chem ; 63(12): 3271-8, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25763810

RESUMO

The knowledge of gas-liquid partitioning of aroma compounds during winemaking fermentation could allow optimization of fermentation management, maximizing concentrations of positive markers of aroma and minimizing formation of molecules, such as hydrogen sulfide (H2S), responsible for defects. In this study, the effect of the main fermentation parameters on the gas-liquid partition coefficients (Ki) of H2S was assessed. The Ki for this highly volatile sulfur compound was measured in water by an original semistatic method developed in this work for the determination of gas-liquid partitioning. This novel method was validated and then used to determine the Ki of H2S in synthetic media simulating must, fermenting musts at various steps of the fermentation process, and wine. Ki values were found to be mainly dependent on the temperature but also varied with the composition of the medium, especially with the glucose concentration. Finally, a model was developed to quantify the gas-liquid partitioning of H2S in synthetic media simulating must to wine. This model allowed a very accurate prediction of the partition coefficient of H2S: the difference between observed and predicted values never exceeded 4%.


Assuntos
Sulfeto de Hidrogênio/química , Fermentação , Cinética , Modelos Teóricos , Enxofre/química , Vinho/análise
14.
Appl Microbiol Biotechnol ; 99(5): 2291-304, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25412578

RESUMO

Volatile compounds produced by yeast during fermentation greatly influence the organoleptic qualities of wine. We developed a model to predict the combined effects of initial nitrogen and phytosterol content and fermentation temperature on the production of volatile compounds. We used a Box-Behnken design and response surface modeling to study the response of Lalvin EC1118® to these environmental conditions. Initial nitrogen content had the greatest influence on most compounds; however, there were differences in the value of fermentation parameters required for the maximal production of the various compounds. Fermentation parameters affected differently the production of isobutanol and isoamyl alcohol, although their synthesis involve the same enzymes and intermediate. We found differences in regulation of the synthesis of acetates of higher alcohols and ethyl esters, suggesting that fatty acid availability is the main factor influencing the synthesis of ethyl esters whereas the production of acetates depends on the activity of alcohol acetyltransferases. We also evaluated the effect of temperature on the total production of three esters by determining gas-liquid balances. Evaporation largely accounted for the effect of temperature on the accumulation of esters in liquid. Nonetheless, the metabolism of isoamyl acetate and ethyl octanoate was significantly affected by this parameter. We extended this study to other strains. Environmental parameters had a similar effect on aroma production in most strains. Nevertheless, the regulation of the synthesis of fermentative aromas was atypical in two strains: Lalvin K1M® and Affinity™ ECA5, which produces a high amount of aromatic compounds and was obtained by experimental evolution.


Assuntos
Nitrogênio/metabolismo , Fitosteróis/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Vinho/microbiologia , Fermentação , Saccharomyces cerevisiae/efeitos da radiação , Temperatura
15.
J Agric Food Chem ; 58(18): 10219-25, 2010 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-20735035

RESUMO

Calculating the gas-liquid partitioning of aromatic molecules during winemaking fermentation is essential to minimize the loss of aroma and to optimize the fermentation conditions. In this study, the effect of the main fermentation parameters on the partition coefficients (ki) of higher alcohols (2-methylpropan-1-ol and 3-methyl butan-1-ol) and esters (ethyl acetate, 3-methyl-1-butyl acetate, and 2-ethyl hexanoate) was assessed. The values of ki were first determined in synthetic media simulating must and wine. They varied considerably with both the hydrophobicity of the compound and the composition of the medium. Then, the effect of temperature on ki was quantified. The absence of any effect of gas composition was also established by replacing air with CO2. Finally, the impact of CO2 stripping was assessed by running specific fermentations in which the rate of CO2 production was kept constant by perfusion with assimilable nitrogen. These fermentations showed that in contrast to temperature and must composition, CO2 stripping did not change the gas-liquid partitioning of higher alcohols and esters.


Assuntos
Fermentação , Hidrocarbonetos Aromáticos/química , Vinho/análise , Dióxido de Carbono/química , Manipulação de Alimentos/métodos , Cinética , Transição de Fase , Controle de Qualidade
16.
Appl Microbiol Biotechnol ; 87(5): 1665-73, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20461506

RESUMO

We investigated the influence of the fermenter size on alcoholic fermentation. Experiments were carried out at pilot scale, in 100-L fermenters, and at laboratory scale, in stirred and static 1-L fermenters. Two musts, Grenache blanc and Sauvignon, were fermented with and without the addition of solid particles from grape musts. Highly clarified must fermentation kinetics was strongly affected by the scale of the experiment, with slower fermentation occurring in the 100-L fermenter. Alcohol, ester, and thiol synthesis in clarified sauvignon must fermentation was also strongly correlated with the fermentation scale. Addition of solid particles from grape tended to reduce the effects on kinetics associated with increasing the scale of the fermentation, by increasing the maximum rate of CO(2) production, and by shortening the duration of fermentation. The addition of such particles also decreased the effects of scaling up the fermentation on the concentration of some volatile compounds, i.e., isoamyl acetate, ethyl octanoate, but did not decrease this effect for other compounds, such as isobutyl acetate, isobutanol, and 3-mercaptohexanol.


Assuntos
Etanol/metabolismo , Microbiologia Industrial/métodos , Vinho/microbiologia , Leveduras/metabolismo , Acetatos/metabolismo , Butanóis/metabolismo , Caprilatos/metabolismo , Dióxido de Carbono/metabolismo , Fermentação , Hexanóis/metabolismo , Pentanóis/metabolismo , Compostos de Sulfidrila/metabolismo , Fatores de Tempo
17.
J Biosci Bioeng ; 103(3): 229-35, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17434425

RESUMO

The monitoring of alcoholic fermentation under enological conditions is currently poor due to the lack of sensors for online measurements. Such monitoring is currently limited to the measurement of CO(2) production or changes in density. In this study, we determined the potential value of measuring electrical conductivity. We showed that this measurement is related to the assimilation of nitrogen, which is typically the limiting nutrient, and directly correlated to ammoniacal nitrogen assimilation at any percentage of ammoniacal nitrogen in the medium. We also used electrical conductivity for the very precise monitoring of the kinetics of nitrogen assimilation after the addition of a pulse of diammonium hydrogen phosphate (DAP) during fermentation. The impact of initial conditions (e.g., must composition, grape variety, pH) remains unclear, but the robustness, precision and low price of the sensor used justify further studies of the potential value of measuring electrical conductivity on the pilot and industrial scales.


Assuntos
Etanol/metabolismo , Nitrogênio/análise , Vinho/análise , Amônia/metabolismo , Condutividade Elétrica , Fermentação , Concentração de Íons de Hidrogênio , Cinética , Nitrogênio/metabolismo , Sistemas On-Line , Fosfatos/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo
18.
Appl Environ Microbiol ; 73(8): 2432-9, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17308189

RESUMO

Fructose utilization by wine yeasts is critically important for the maintenance of a high fermentation rate at the end of alcoholic fermentation. A Saccharomyces cerevisiae wine yeast able to ferment grape must sugars to dryness was found to have a high fructose utilization capacity. We investigated the molecular basis of this enhanced fructose utilization capacity by studying the properties of several hexose transporter (HXT) genes. We found that this wine yeast harbored a mutated HXT3 allele. A functional analysis of this mutated allele was performed by examining expression in an hxt1-7Delta strain. Expression of the mutated allele alone was found to be sufficient for producing an increase in fructose utilization during fermentation similar to that observed in the commercial wine yeast. This work provides the first demonstration that the pattern of fructose utilization during wine fermentation can be altered by expression of a mutated hexose transporter in a wine yeast. We also found that the glycolytic flux could be increased by overexpression of the mutant transporter gene, with no effect on fructose utilization. Our data demonstrate that the Hxt3 hexose transporter plays a key role in determining the glucose/fructose utilization ratio during fermentation.


Assuntos
Frutose/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Mutação , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alelos , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Metabolismo dos Carboidratos , Dióxido de Carbono/metabolismo , Clonagem Molecular , Deleção de Genes , Expressão Gênica , Proteínas Facilitadoras de Transporte de Glucose , Dados de Sequência Molecular
19.
Appl Environ Microbiol ; 72(9): 5822-8, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16957200

RESUMO

We recently showed that expressing an H(2)O-NADH oxidase in Saccharomyces cerevisiae drastically reduces the intracellular NADH concentration and substantially alters the distribution of metabolic fluxes in the cell. Although the engineered strain produces a reduced amount of ethanol, a high level of acetaldehyde accumulates early in the process (1 g/liter), impairing growth and fermentation performance. To overcome these undesirable effects, we carried out a comprehensive analysis of the impact of oxygen on the metabolic network of the same NADH oxidase-expressing strain. While reducing the oxygen transfer rate led to a gradual recovery of the growth and fermentation performance, its impact on the ethanol yield was negligible. In contrast, supplying oxygen only during the stationary phase resulted in a 7% reduction in the ethanol yield, but without affecting growth and fermentation. This approach thus represents an effective strategy for producing wine with reduced levels of alcohol. Importantly, our data also point to a significant role for NAD(+) reoxidation in controlling the glycolytic flux, indicating that engineered yeast strains expressing an NADH oxidase can be used as a powerful tool for gaining insight into redox metabolism in yeast.


Assuntos
Etanol/metabolismo , Saccharomyces cerevisiae/metabolismo , Vinho/microbiologia , Fermentação , Genes Bacterianos , Engenharia Genética , Glucose/metabolismo , Cinética , Lactococcus lactis/enzimologia , Lactococcus lactis/genética , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , Consumo de Oxigênio , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética
20.
J Ind Microbiol Biotechnol ; 31(5): 209-15, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15205990

RESUMO

Industrial applications for lactate, such as the production of chemicals, has led to interest in producing this organic acid by metabolically engineered a yeast such as Saccharomyces cerevisiae, which is more acid tolerant than lactic acid bacteria. This paper deals with lactate production by S. cerevisiae K1-LDH, in which the Lactobacillus plantarum lactate dehydrogenase (LDH) gene is integrated into the genome of the wine yeast strain K1. We show that a vitamin, nicotinic acid (NiA), was the limiting factor for lactate production during fermentation with the K1-LDH strain. Increasing the NiA concentration in batch conditions or in the medium used to feed chemostats affected the lactate yield. Moreover, the addition of pulses of NiA or the exponential addition of NiA made it possible to control the lactate production kinetics throughout the fermentation process. The results point to the role of NiA in the regulation of metabolic pathways, but the physiological mechanisms remain poorly understood.


Assuntos
L-Lactato Desidrogenase/genética , Ácido Láctico/biossíntese , Niacina/farmacologia , Saccharomyces cerevisiae/metabolismo , Meios de Cultura , Fermentação , L-Lactato Desidrogenase/metabolismo , Lactobacillus/genética , Niacina/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Vitaminas/metabolismo , Vitaminas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA