Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Death Dis ; 13(4): 291, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365636

RESUMO

Necroptosis is a form of caspase-independent programmed cell death that arises from disruption of cell membranes by the mixed lineage kinase domain-like (MLKL) pseudokinase after its activation by the upstream kinases, receptor interacting protein kinase (RIPK)-1 and RIPK3, within a complex known as the necrosome. Dysregulated necroptosis has been implicated in numerous inflammatory pathologies. As such, new small molecule necroptosis inhibitors are of great interest, particularly ones that operate downstream of MLKL activation, where the pathway is less well defined. To better understand the mechanisms involved in necroptosis downstream of MLKL activation, and potentially uncover new targets for inhibition, we screened known kinase inhibitors against an activated mouse MLKL mutant, leading us to identify the lymphocyte-specific protein tyrosine kinase (Lck) inhibitor AMG-47a as an inhibitor of necroptosis. We show that AMG-47a interacts with both RIPK1 and RIPK3, that its ability to protect from cell death is dependent on the strength of the necroptotic stimulus, and that it blocks necroptosis most effectively in human cells. Moreover, in human cell lines, we demonstrate that AMG-47a can protect against cell death caused by forced dimerisation of MLKL truncation mutants in the absence of any upstream signalling, validating that it targets a process downstream of MLKL activation. Surprisingly, however, we also found that the cell death driven by activated MLKL in this model was completely dependent on the presence of RIPK1, and to a lesser extent RIPK3, although it was not affected by known inhibitors of these kinases. Together, these results suggest an additional role for RIPK1, or the necrosome, in mediating human necroptosis after MLKL is phosphorylated by RIPK3 and provide further insight into reported differences in the progression of necroptosis between mouse and human cells.


Assuntos
Necroptose , Proteínas Quinases , Animais , Apoptose , Morte Celular , Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Camundongos , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais
2.
Bioorg Chem ; 117: 105359, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34689083

RESUMO

Malaria is a devastating disease caused by Plasmodium parasites. Emerging resistance against current antimalarial therapeutics has engendered the need to develop antimalarials with novel structural classes. We recently described the identification and initial optimization of the 2-anilino quinazoline antimalarial class. Here, we refine the physicochemical properties of this antimalarial class with the aim to improve aqueous solubility and metabolism and to reduce adverse promiscuity. We show the physicochemical properties of this class are intricately balanced with asexual parasite activity and human cell cytotoxicity. Structural modifications we have implemented improved LipE, aqueous solubility and in vitro metabolism while preserving fast acting P. falciparum asexual stage activity. The lead compounds demonstrated equipotent activity against P. knowlesi parasites and were not predisposed to resistance mechanisms of clinically used antimalarials. The optimized compounds exhibited modest activity against early-stage gametocytes, but no activity against pre-erythrocytic liver parasites. Confoundingly, the refined physicochemical properties installed in the compounds did not engender improved oral efficacy in a P. berghei mouse model of malaria compared to earlier studies on the 2-anilino quinazoline class. This study provides the framework for further development of this antimalarial class.


Assuntos
Compostos de Anilina/química , Compostos de Anilina/farmacologia , Antimaláricos/química , Antimaláricos/farmacologia , Malária/tratamento farmacológico , Plasmodium/efeitos dos fármacos , Quinazolinas/química , Quinazolinas/farmacologia , Aminação , Compostos de Anilina/uso terapêutico , Animais , Antimaláricos/uso terapêutico , Feminino , Humanos , Malária/parasitologia , Camundongos , Plasmodium/fisiologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/fisiologia , Quinazolinas/uso terapêutico
3.
Eur J Med Chem ; 214: 113253, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33610028

RESUMO

The emerging resistance to combination therapies comprised of artemisinin derivatives has driven a need to identify new antimalarials with novel mechanisms of action. Central to the survival and proliferation of the malaria parasite is the invasion of red blood cells by Plasmodium merozoites, providing an attractive target for novel therapeutics. A screen of the Medicines for Malaria Venture Pathogen Box employing transgenic P. falciparum parasites expressing the nanoluciferase bioluminescent reporter identified the phenylsulfonyl piperazine class as a specific inhibitor of erythrocyte invasion. Here, we describe the optimization and further characterization of the phenylsulfonyl piperazine class. During the optimization process we defined the functionality required for P. falciparum asexual stage activity and determined the alpha-carbonyl S-methyl isomer was important for antimalarial potency. The optimized compounds also possessed comparable activity against multidrug resistant strains of P. falciparum and displayed weak activity against sexual stage gametocytes. We determined that the optimized compounds blocked erythrocyte invasion consistent with the asexual activity observed and therefore the phenylsulfonyl piperazine analogues described could serve as useful tools for studying Plasmodium erythrocyte invasion.


Assuntos
Antimaláricos/farmacologia , Eritrócitos/efeitos dos fármacos , Malária Falciparum/tratamento farmacológico , Piperazinas/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium knowlesi/efeitos dos fármacos , Animais , Antimaláricos/síntese química , Antimaláricos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Eritrócitos/parasitologia , Células Hep G2 , Humanos , Camundongos , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Testes de Sensibilidade Parasitária , Piperazinas/síntese química , Piperazinas/química , Solubilidade , Relação Estrutura-Atividade
4.
Eur J Med Chem ; 195: 112254, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32251744

RESUMO

A persistent latent reservoir of virus in CD4+ T cells is a major barrier to cure HIV. Activating viral transcription in latently infected cells using small molecules is one strategy being explored to eliminate latency. We previously described the use of a FlpIn.FM HEK293 cellular assay to identify and then optimize the 2-acylaminothiazole class to exhibit modest activation of HIV gene expression. Here, we implement two strategies to further improve the activation of viral gene expression and physicochemical properties of this class. Firstly, we explored rigidification of the central oxy-carbon linker with a variety of saturated heterocycles, and secondly, investigated bioisosteric replacement of the 2-acylaminothiazole moiety. The optimization process afforded lead compounds (74 and 91) from the 2-piperazinyl thiazolyl urea and the imidazopyridine class. The lead compounds from each class demonstrate potent activation of HIV gene expression in the FlpIn.FM HEK293 cellular assay (both with LTR EC50s of 80 nM) and in the Jurkat Latency 10.6 cell model (LTR EC50 220 and 320 nM respectively), but consequently activate gene expression non-specifically in the FlpIn.FM HEK293 cellular assay (CMV EC50 70 and 270 nM respectively) manifesting in cellular cytotoxicity. The lead compounds have potential for further development as novel latency reversing agents.


Assuntos
HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Imidazóis/química , Imidazóis/farmacologia , Piridinas/química , Piridinas/farmacologia , Tiazóis/química , Ureia/química , Latência Viral/efeitos dos fármacos , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Desenho de Fármacos , Células HEK293 , Humanos
5.
Cell Host Microbe ; 27(4): 642-658.e12, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32109369

RESUMO

Artemisin combination therapy (ACT) is the main treatment option for malaria, which is caused by the intracellular parasite Plasmodium. However, increased resistance to ACT highlights the importance of finding new drugs. Recently, the aspartic proteases Plasmepsin IX and X (PMIX and PMX) were identified as promising drug targets. In this study, we describe dual inhibitors of PMIX and PMX, including WM382, that block multiple stages of the Plasmodium life cycle. We demonstrate that PMX is a master modulator of merozoite invasion and direct maturation of proteins required for invasion, parasite development, and egress. Oral administration of WM382 cured mice of P. berghei and prevented blood infection from the liver. In addition, WM382 was efficacious against P. falciparum asexual infection in humanized mice and prevented transmission to mosquitoes. Selection of resistant P. falciparum in vitro was not achievable. Together, these show that dual PMIX and PMX inhibitors are promising candidates for malaria treatment and prevention.


Assuntos
Antimaláricos/farmacologia , Ácido Aspártico Endopeptidases/efeitos dos fármacos , Malária/tratamento farmacológico , Animais , Transmissão de Doença Infecciosa/prevenção & controle , Estágios do Ciclo de Vida/efeitos dos fármacos , Merozoítos/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos
6.
J Med Chem ; 62(15): 7146-7159, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31256587

RESUMO

A high-throughput screen for inhibitors of the histone acetyltransferase, KAT6A, led to identification of an aryl sulfonohydrazide derivative (CTX-0124143) that inhibited KAT6A with an IC50 of 1.0 µM. Elaboration of the structure-activity relationship and medicinal chemistry optimization led to the discovery of WM-8014 (97), a highly potent inhibitor of KAT6A (IC50 = 0.008 µM). WM-8014 competes with acetyl-CoA (Ac-CoA), and X-ray crystallographic analysis demonstrated binding to the Ac-CoA binding site. Through inhibition of KAT6A activity, WM-8014 induces cellular senescence and represents a unique pharmacological tool.


Assuntos
Benzenossulfonatos/química , Descoberta de Drogas/métodos , Histona Acetiltransferases/antagonistas & inibidores , Histona Acetiltransferases/metabolismo , Hidrazinas/química , Animais , Benzenossulfonatos/farmacologia , Células CACO-2 , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Hidrazinas/farmacologia , Camundongos , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA