Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 5(3): eaau3826, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30899781

RESUMO

For more than two decades, there have been reports on an unexpected metallic state separating the established superconducting and insulating phases of thin-film superconductors. To date, no theoretical explanation has been able to fully capture the existence of such a state for the large variety of superconductors exhibiting it. Here, we show that for two very different thin-film superconductors, amorphous indium oxide and a single crystal of 2H-NbSe2, this metallic state can be eliminated by adequately filtering external radiation. Our results show that the appearance of temperature-independent, metallic-like transport at low temperatures is sufficiently described by the extreme sensitivity of these superconducting films to external perturbations. We relate this sensitivity to the theoretical observation that, in two dimensions, superconductivity is only marginally stable.

2.
Phys Rev Lett ; 119(24): 247001, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29286730

RESUMO

Thin films of amorphous indium oxide undergo a magnetic field driven superconducting to insulator quantum phase transition. In the insulating phase, the current-voltage characteristics show large current discontinuities due to overheating of electrons. We show that the onset voltage for the discontinuities vanishes as we approach the quantum critical point. As a result, the insulating phase becomes unstable with respect to any applied voltage making it, at least experimentally, immeasurable. We emphasize that unlike previous reports of the absence of linear response near quantum phase transitions, in our system, the departure from equilibrium is discontinuous. Because the conditions for these discontinuities are satisfied in most insulators at low temperatures, and due to the decay of all characteristic energy scales near quantum phase transitions, we believe that this instability is general and should occur in various systems while approaching their quantum critical point. Accounting for this instability is crucial for determining the critical behavior of systems near the transition.

3.
Sci Rep ; 5: 13503, 2015 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-26310437

RESUMO

In superconductors the zero-resistance current-flow is protected from dissipation at finite temperatures (T) by virtue of the short-circuit condition maintained by the electrons that remain in the condensed state. The recently suggested finite-T insulator and the "superinsulating" phase are different because any residual mechanism of conduction will eventually become dominant as the finite-T insulator sets-in. If the residual conduction is small it may be possible to observe the transition to these intriguing states. We show that the conductivity of the high magnetic-field insulator terminating superconductivity in amorphous indium-oxide exhibits an abrupt drop, and seem to approach a zero conductance at T < 0.04 K. We discuss our results in the light of theories that lead to a finite-T insulator.

4.
Nanotechnology ; 24(37): 375304, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-23974037

RESUMO

We report a novel method for the fabrication of superconducting nano-devices based on niobium. The well-known difficulties of lithographic patterning of high-quality niobium are overcome by replacing the usual organic resist mask by a metallic one. The quality of the fabrication procedure is demonstrated by the realization and characterization of long and narrow superconducting lines and niobium-gold-niobium proximity SQUIDs.

5.
Phys Rev Lett ; 105(23): 236802, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-21231492

RESUMO

We report on a study of magnetotransport in LaAlO3 /SrTiO3 interfaces characterized by mobilities of the order of several thousands cm2/V s. We observe Shubnikov-de Haas oscillations whose period depends only on the perpendicular component of the magnetic field. This observation directly indicates the formation of a two-dimensional electron gas originating from quantum confinement at the interface. From the temperature dependence of the oscillation amplitude we extract an effective carrier mass m* ≃ 1.45 m(e). An electric field applied in the back-gate geometry increases the mobility, the carrier density, and the oscillation frequency.

6.
Phys Rev Lett ; 102(17): 176802, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19518807

RESUMO

The current-voltage characteristics measured in the insulating state terminating the superconducting phase in disordered superconductors exhibit sharp threshold voltages, where the current abruptly changes by as much as 5 orders of magnitude. We analyze the current-voltage characteristics of an amorphous indium oxide film in the field-tuned insulating state, and show that they are consistent with a bistability of the electron temperature, and with a significant overheating of the electron system above the lattice temperature. An analysis of these current jumps indicates that, in the insulating state, the electrons are thermally decoupled from the phonon bath.

7.
Phys Rev Lett ; 101(15): 157006, 2008 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-18999631

RESUMO

Scanning tunneling spectroscopy at very low temperatures on homogeneously disordered superconducting titanium nitride thin films reveals strong spatial inhomogeneities of the superconducting gap Delta in the density of states. Upon increasing disorder, we observe suppression of the superconducting critical temperature Tc towards zero, enhancement of spatial fluctuations in Delta, and growth of the Delta/Tc ratio. These findings suggest that local superconductivity survives across the disorder-driven superconductor-insulator transition.

8.
Philos Trans A Math Phys Eng Sci ; 366(1863): 267-79, 2008 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-18024360

RESUMO

The experimental discovery of superconductivity in boron-doped diamond came as a major surprise to both the diamond and the superconducting materials communities. The main experimental results obtained since then on single-crystal diamond epilayers are reviewed and applied to calculations, and some open questions are identified. The critical doping of the metal-to-insulator transition (MIT) was found to coincide with that necessary for superconductivity to occur. Some of the critical exponents of the MIT were determined and superconducting diamond was found to follow a conventional type II behaviour in the dirty limit, with relatively high critical temperature values quite close to the doping-induced insulator-to-metal transition. This could indicate that on the metallic side both the electron-phonon coupling and the screening parameter depend on the boron concentration. In our view, doped diamond is a potential model system for the study of electronic phase transitions and a stimulating example for other semiconductors such as germanium and silicon.

9.
Phys Rev Lett ; 96(9): 097006, 2006 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-16606302

RESUMO

We present the first scanning tunneling spectroscopy study of single-crystalline boron-doped diamond. The measurements were performed below 100 mK with a low temperature scanning tunneling microscope. The tunneling density of states displays a clear superconducting gap. The temperature evolution of the order parameter follows the weak-coupling BCS law with Delta(0)/kBTc approximately 1.74. Vortex imaging at low magnetic field also reveals localized states inside the vortex core that are unexpected for such a dirty superconductor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA