Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microbiome ; 11(1): 189, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37612775

RESUMO

BACKGROUND: The transition from water to air is a key event in the evolution of many marine organisms to access new food sources, escape water hypoxia, and exploit the higher and temperature-independent oxygen concentration of air. Despite the importance of microorganisms in host adaptation, their contribution to overcoming the challenges posed by the lifestyle changes from water to land is not well understood. To address this, we examined how microbial association with a key multifunctional organ, the gill, is involved in the intertidal adaptation of fiddler crabs, a dual-breathing organism. RESULTS: Electron microscopy revealed a rod-shaped bacterial layer tightly connected to the gill lamellae of the five crab species sampled across a latitudinal gradient from the central Red Sea to the southern Indian Ocean. The gill bacterial community diversity assessed with 16S rRNA gene amplicon sequencing was consistently low across crab species, and the same actinobacterial group, namely Ilumatobacter, was dominant regardless of the geographic location of the host. Using metagenomics and metatranscriptomics, we detected that these members of actinobacteria are potentially able to convert ammonia to amino acids and may help eliminate toxic sulphur compounds and carbon monoxide to which crabs are constantly exposed. CONCLUSIONS: These results indicate that bacteria selected on gills can play a role in the adaptation of animals in dynamic intertidal ecosystems. Hence, this relationship is likely to be important in the ecological and evolutionary processes of the transition from water to air and deserves further attention, including the ontogenetic onset of this association. Video Abstract.


Assuntos
Actinobacteria , Braquiúros , Animais , Brânquias , Ecossistema , Adaptação ao Hospedeiro , RNA Ribossômico 16S/genética , Bactérias/genética
2.
PLoS One ; 17(4): e0266977, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35421185

RESUMO

Due to the chemico-physical differences between air and water, the transition from aquatic life to the land poses several challenges for animal evolution, necessitating morphological, physiological and behavioural adaptations. Microbial symbiosis is known to have played an important role in eukaryote evolution, favouring host adaptation under changing environmental conditions. We selected mangrove brachyuran crabs as a model group to investigate the prokaryotes associated with the gill of crabs dwelling at different tidal levels (subtidal, intertidal and supratidal). In these animals, the gill undergoes a high selective pressure, finely regulating multiple physiological functions during both animal submersion under and emersion from the periodical tidal events. We hypothesize that similarly to other marine animals, the gills of tidal crabs are consistently colonized by prokaryotes that may quantitatively change along the environmental gradient driven by the tides. Using electron microscopy techniques, we found a thick layer of prokaryotes over the gill surfaces of all of 12 crab species from the mangrove forests of Saudi Arabia, Kenya and South Africa. We consistently observed two distinct morphotypes (rod- and spherical-shaped), positioned horizontally and/or perpendicularly to the gill surface. The presence of replicating cells indicated that the prokaryote layer is actively growing on the gill surface. Quantitative analysis of scanning electron microscopy images and the quantification of the bacterial 16S rRNA gene by qPCR revealed a higher specific abundance of prokaryote cells per gill surface area in the subtidal species than those living in the supratidal zone. Our results revealed a correlation between prokaryote colonization of the gill surfaces and the host lifestyle. This finding indicates a possible role of prokaryote partnership within the crab gills, with potential effects on animal adaptation to different levels of the intertidal gradient present in the mangrove ecosystem.


Assuntos
Braquiúros , Animais , Braquiúros/genética , Ecossistema , Brânquias , RNA Ribossômico 16S/genética , Áreas Alagadas
3.
mBio ; 12(3): e0057421, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34154402

RESUMO

"Candidatus Midichloria mitochondrii" is a Gram-negative bacterium that lives in strict intracellular symbiosis with the hard tick Ixodes ricinus, forming one of the most intriguing endosymbiosis described to date. The bacterium is capable of durably colonizing the host mitochondria, a peculiar tropism that makes "Ca. Midichloria mitochondrii" a very interesting tool to study the physiology of these cellular organelles. The interaction between the symbiont and the organelle has, however, been difficult to characterize. A parallelism with the predatory bacterium Bdellovibrio bacteriovorus has been drawn, suggesting the hypothesis that "Ca. Midichloria mitochondrii" could prey on mitochondria and consume them to multiply. We studied the life cycle of the bacterium within the host oocytes using a multidisciplinary approach, including electron microscopy, molecular biology, statistics, and systems biology. Our results were not coherent with a predatory-like behavior by "Ca. Midichloria mitochondrii" leading us to propose a novel hypothesis for its life cycle. Based on our results, we here present a novel model called the "mitochondrion-to-mitochondrion hypothesis." Under this model, the bacterium would be able to move from mitochondrion to mitochondrion, possibly within a mitochondrial network. We show that this model presents a good fit with quantitative electron microscopy data. IMPORTANCE Our results suggest that "Candidatus Midichloria mitochondrii," the intramitochondrial bacterium, does not invade mitochondria like predatory bacteria do but instead moves from mitochondrion to mitochondrion within the oocytes of Ixodes ricinus. A better understanding of the lifestyle of "Ca. Midichloria mitochondrii" will allow us to better define the role of this bacterial symbiont in the host physiology.


Assuntos
Alphaproteobacteria/crescimento & desenvolvimento , Alphaproteobacteria/ultraestrutura , Ixodes/microbiologia , Estágios do Ciclo de Vida , Microscopia Eletrônica/métodos , Animais , DNA Bacteriano , Mitocôndrias/microbiologia , Filogenia , Simbiose
4.
Front Microbiol ; 12: 624014, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679643

RESUMO

Bacterial species able to produce proteins that are toxic against insects have been discovered at the beginning of the last century. However, up to date only two of them have been used as pesticides in mosquito control strategies targeting larval breeding sites: Bacillus thuringensis var. israelensis and Lysinibacillus sphaericus. Aiming to expand the arsenal of biopesticides, bacterial cultures from 44 soil samples were assayed for their ability to kill larvae of Aedes albopictus. A method to select, grow and test the larvicidal capability of spore-forming bacteria from each soil sample was developed. This allowed identifying 13 soil samples containing strains capable of killing Ae. albopictus larvae. Among the active isolates, one strain with high toxicity was identified as Brevibacillus laterosporus by 16S rRNA gene sequencing and by morphological characterization using transmission electron microscopy. The new isolate showed a larvicidal activity significantly higher than the B. laterosporus LMG 15441 reference strain. Its genome was phylogenomically characterized and compared to the available Brevibacillus genomes. Thus, the new isolate can be considered as a candidate adjuvant to biopesticides formulations that would help preventing the insurgence of resistance.

5.
Pharmacol Res ; 161: 105288, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33160070

RESUMO

Leishmaniases are severe vector-borne diseases affecting humans and animals, caused by Leishmania protozoans. Over one billion people and millions of dogs live in endemic areas for leishmaniases and are at risk of infection. Immune polarization plays a major role in determining the outcome of Leishmania infections: hosts displaying M1-polarized macrophages are protected, while those biased on the M2 side acquire a chronic infection that could develop into a deadly disease. The identification of the factors involved in M1 polarization is essential for the design of therapeutic and prophylactic interventions, including vaccines. Infection by the filarial nematode Dirofilaria immitis could be one of the factors that interfere with leishmaniasis in dogs. Indeed, filarial nematodes induce a partial skew of the immune response towards M1, likely caused by their bacterial endosymbionts, Wolbachia. Here we have examined the potential of AsaiaWSP, a bacterium engineered for the expression of the Wolbachia surface protein (WSP), as an inductor of M1 macrophage activation and Leishmania killing. Macrophages stimulated with AsaiaWSP displayed a strong leishmanicidal activity, comparable to that determined by the choice-drug amphotericin B. Additionally, AsaiaWSP determined the expression of markers of classical macrophage activation, including M1 cytokines, ROS and NO, and an increase in phagocytosis activity. Asaia not expressing WSP also induced macrophage activation, although at a lower extent compared to AsaiaWSP. In summary, the results of the present study confirm the immunostimulating properties of WSP highlighting a potential therapeutic efficacy against Leishmania parasites. Furthermore, Asaia was designed as a delivery system for WSP, thus developing a novel type of immunomodulating agent, worthy of being investigated for immuno-prophylaxis and -therapy of leishmaniases and other diseases that could be subverted by M1 macrophage activation.


Assuntos
Acetobacteraceae/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Imunidade Inata , Leishmania infantum/imunologia , Vacinas contra Leishmaniose/imunologia , Ativação de Macrófagos , Macrófagos/microbiologia , Macrófagos/parasitologia , Acetobacteraceae/genética , Acetobacteraceae/metabolismo , Animais , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Linhagem Celular , Citocinas/metabolismo , Vetores Genéticos , Interações Hospedeiro-Parasita , Leishmania infantum/crescimento & desenvolvimento , Leishmania infantum/ultraestrutura , Vacinas contra Leishmaniose/genética , Vacinas contra Leishmaniose/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Fagocitose , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Vacinas de DNA/imunologia
6.
Biomed Res Int ; 2018: 2597074, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30112369

RESUMO

The Trypanosoma theileri group includes several trypanosome species hardly distinguishable due to the lack of discriminating morphological characters. Trypanosomes belonging to this group have been isolated from different bovine, ovine, and cervids in Europe, Africa, Asia, and Americas. The principal vectors of the T. theileri group are considered tabanid flies; however, T. melophagium is transmitted exclusively by sheep keds. In 2016, 128 sand flies out of 2,728 trapped in Valsamoggia municipality, Italy, were individually dissected and an unknown trypanosome strain, named TrPhp1, was isolated from a female of the sand fly Phlebotomus perfiliewi. Sequence analysis placed this trypanosome in the T. theileri group with very high homology to other trypanosomes detected in European cervids. This is the first report of the T. theileri group isolation from a sand fly, and the possible role of this insect group in the trypanosome transmission cycle is discussed. Within the T. theileri group, the phylogenetic analysis distinguished several lineages, which, unfortunately, do not correspond with their host specificity and their taxonomic status remains ambiguous.


Assuntos
Phlebotomus/parasitologia , Trypanosoma/isolamento & purificação , Animais , DNA de Protozoário/análise , Dípteros , Feminino , Insetos Vetores , Itália , Masculino , Filogenia , Psychodidae , Ovinos , Trypanosomatina
7.
Environ Microbiol ; 20(3): 1064-1077, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29345102

RESUMO

The knowledge of the fungal mycobiota of arthropods, including the vectors of human and animal diseases, is still limited. Here, the mycobiota associated with the sand fly Phlebotomus perniciosus, the main vector of leishmaniasis in the western Mediterranean area, by a culture-dependent approach (microbiological analyses and sequencing of the 26S rRNA gene), internal transcribed spacer (ITS) rRNA amplicon-based next-generation sequencing, fluorescence in situ hybridisation (FISH), and genome sequencing of the dominant yeast species was investigated. The dominant species was Meyerozyma guilliermondii, known for its biotechnological applications. The focus was on this yeast and its prevalence in adults, pupae and larvae of reared sand flies (overall prevalence: 57.5%) and of field-collected individuals (overall prevalence: 9%) was investigated. Using whole-mount FISH and microscopic examination, it was further showed that M. guilliermondii colonizes the midgut of females, males and larvae and the distal part of Malpighian tubules of female sand flies, suggesting a possible role in urate degradation. Finally, the sequencing and analysis of the genome of M. guilliermondii allowed predicting the complete uric acid degradation pathway, suggesting that the yeast could contribute to the removal of the excess of nitrogenous wastes after the blood meal of the insect host.


Assuntos
Phlebotomus/microbiologia , Saccharomycetales/genética , Saccharomycetales/metabolismo , Simbiose/fisiologia , Ácido Úrico/metabolismo , Animais , Feminino , Genoma Fúngico/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hibridização in Situ Fluorescente , Insetos Vetores , Larva/microbiologia , Masculino , Túbulos de Malpighi/microbiologia , Microbiota/genética , RNA Ribossômico/genética , Saccharomycetales/isolamento & purificação
8.
Sci Rep ; 5: 15811, 2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26563507

RESUMO

Intracellular reproductive manipulators, such as Candidatus Cardinium and Wolbachia are vertically transmitted to progeny but rarely show co-speciation with the host. In sap-feeding insects, plant tissues have been proposed as alternative horizontal routes of interspecific transmission, but experimental evidence is limited. Here we report results from experiments that show that Cardinium is horizontally transmitted between different phloem sap-feeding insect species through plants. Quantitative PCR and in situ hybridization experiments indicated that the leafhopper Scaphoideus titanus releases Cardinium from its salivary glands during feeding on both artificial media and grapevine leaves. Successional time-course feeding experiments with S. titanus initially fed sugar solutions or small areas of grapevine leaves followed by feeding by the phytoplasma vector Macrosteles quadripunctulatus or the grapevine feeder Empoasca vitis revealed that the symbionts were transmitted to both species. Explaining interspecific horizontal transmission through plants improves our understanding of how symbionts spread, their lifestyle and the symbiont-host intermixed evolutionary pattern.


Assuntos
Bacteroidetes/fisiologia , Hemípteros/microbiologia , Hemípteros/fisiologia , Plantas/microbiologia , Plantas/parasitologia , Animais , Bacteroidetes/classificação , Bacteroidetes/genética , Geografia , Hemípteros/genética , Interações Hospedeiro-Patógeno , Hibridização In Situ , Hibridização in Situ Fluorescente , Insetos Vetores/microbiologia , Insetos Vetores/fisiologia , Espaço Intracelular/microbiologia , Espaço Intracelular/parasitologia , Itália , Microscopia Eletrônica de Transmissão , Filogenia , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Folhas de Planta/microbiologia , Folhas de Planta/parasitologia , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real , Glândulas Salivares/microbiologia , Simbiose , Vitis/microbiologia , Vitis/parasitologia
9.
PLoS One ; 10(8): e0133593, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26244842

RESUMO

BACKGROUND: Tularemia is a zoonosis caused by the Francisella tularensis, a highly infectious Gram-negative coccobacillus. Due to easy dissemination, multiple routes of infection, high environmental contamination and morbidity and mortality rates, Francisella is considered a potential bioterrorism threat and classified as a category A select agent by the CDC. Tick bites are among the most prevalent modes of transmission, and ticks have been indicated as a possible reservoir, although their reservoir competence has yet to be defined. Tick-borne transmission of F. tularensis was recognized in 1923, and transstadial transmission has been demonstrated in several tick species. Studies on transovarial transmission, however, have reported conflicting results. OBJECTIVE: The aim of this study was to evaluate the role of ticks as reservoirs for Francisella, assessing the transovarial transmission of F. tularensis subsp. holarctica in ticks, using experimentally-infected females of Dermacentor reticulatus and Ixodes ricinus. RESULTS: Transmission electron microscopy and fluorescence in situ hybridization showed F. tularensis within oocytes. However, cultures and bioassays of eggs and larvae were negative; in addition, microscopy techniques revealed bacterial degeneration/death in the oocytes. CONCLUSIONS: These results suggest that bacterial death might occur in oocytes, preventing the transovarial transmission of Francisella. We can speculate that Francisella does not have a defined reservoir, but that rather various biological niches (e.g. ticks, rodents), that allow the bacterium to persist in the environment. Our results, suggesting that ticks are not competent for the bacterium vertical transmission, are congruent with this view.


Assuntos
Vetores Aracnídeos/microbiologia , Dermacentor/microbiologia , Francisella tularensis/fisiologia , Ixodes/microbiologia , Tularemia/microbiologia , Animais , DNA Bacteriano/genética , Feminino , Francisella tularensis/genética , Francisella tularensis/ultraestrutura , Cobaias , Interações Hospedeiro-Patógeno , Humanos , Hibridização in Situ Fluorescente , Microscopia Eletrônica de Transmissão , Oócitos/microbiologia , Ovário/microbiologia , Reação em Cadeia da Polimerase , RNA Ribossômico 23S/genética , Tularemia/diagnóstico , Tularemia/transmissão
10.
Parasit Vectors ; 8: 278, 2015 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-25981386

RESUMO

BACKGROUND: Wolbachia is a group of intracellular maternally inherited bacteria infecting a high number of arthropod species. Their presence in different mosquito species has been largely described, but Aedes aegypti, the main vector of Dengue virus, has never been found naturally infected by Wolbachia. Similarly, malaria vectors and other anophelines are normally negative to Wolbachia, with the exception of an African population where these bacteria have recently been detected. Asaia is an acetic acid bacterium stably associated with several mosquito species, found as a dominant microorganism of the mosquito microbiota. Asaia has been described in gut, salivary glands and in reproductive organs of adult mosquitoes in Ae. aegypti and in anophelines. It has recently been shown that Asaia may impede vertical transmission of Wolbachia in Anopheles mosquitoes. Here we present an experimental study, aimed at determining whether there is a negative interference between Asaia and Wolbachia, for the gonad niche in mosquitoes. METHODS: Different methods (PCR and qPCR, monoclonal antibody staining and FISH) have been used to address the question of the co-localization and the relative presence/abundance of the two symbionts. PCR and qPCR were performed to qualitatively and quantitatively verify the distribution of Asaia and Wolbachia in different mosquito species/organs. Monoclonal antibody staining and FISH were performed to localize the symbionts in different mosquito species. RESULTS: Here we provide evidence that, in Anopheles and in other mosquitoes, there is a reciprocal negative interference between Asaia and Wolbachia symbionts, in terms of the colonization of the gonads. In particular, we have shown that in some mosquito species the presence of one of the symbionts prevented the establishment of the second, while in other systems the symbionts were co-localized, although at reduced densities. CONCLUSIONS: A mutual exclusion or a competition between Asaia and Wolbachia may contribute to explain the inability of Wolbachia to colonize the female reproductive organs of anophelines, inhibiting its vertical transmission and explaining the absence of Wolbachia infection in Ae. aegypti and in the majority of natural populations of Anopheles mosquitoes.


Assuntos
Aedes/microbiologia , Alphaproteobacteria/isolamento & purificação , Anopheles/microbiologia , Gônadas/microbiologia , Wolbachia/isolamento & purificação , Animais , Feminino , Trato Gastrointestinal/microbiologia , Masculino
11.
Environ Entomol ; 43(4): 913-22, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25182613

RESUMO

Microbial symbionts played a central role in insect evolution. Oreina cacaliae (Schrank, 1785) (Coleoptera: Chrysomelidae) is a rare example of a viviparous insect, able to feed on toxic plants and sequester toxic compounds. In the current study, the microbiota associated with O. cacaliae was characterized using a culture-independent approach, targeting the 16S rRNA bacterial gene. The obtained 16S rRNA gene sequences were analyzed and identified at different taxonomic levels. Wolbachia was the dominant bacterium, both in male and female (100 and 91.9%, respectively) individuals; the detected Wolbachia was described as a new sequence type based on multilocus sequence typing (Wolbachia ST375 Ocac_A_wVdO). After phylogenetic analyses, Wolbachia ST375 Ocac_A_wVdO was attributed to the supergroup A. Immunofluorescence assays and electron microscopy confirmed the presence of Wolbachia within O. cacaliae oocytes, confirming its transovarial transmission in this species. Representatives of six species of Oreina were tested for the presence of Wolbachia through specific polymerase chain reaction, and a dendrogram was generated for these species based on coxI gene sequences. The Wolbachia harbored by different species of Oreina were characterized by multilocus sequence typing. Five out of the six examined Oreina species were positive for Wolbachia, with four of these harboring the same sequence type.


Assuntos
Besouros/microbiologia , Besouros/fisiologia , Wolbachia/genética , Animais , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Feminino , Masculino , Tipagem de Sequências Multilocus , Oócitos/microbiologia , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Reprodução , Análise de Sequência de DNA , Wolbachia/classificação , Wolbachia/fisiologia
12.
Nano Lett ; 14(7): 3959-65, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-24913622

RESUMO

Advanced nanostructured materials, such as gold nanoparticles, magnetic nanoparticles, and multifunctional materials, are nowadays used in many state-of-the-art biomedical application. However, although the engineering in this field is very advanced, there remain some fundamental problems involving the interaction mechanisms between nanostructures and cells or tissues. Here we show the potential of (1)H NMR in the investigation of the uptake of two different kinds of nanostructures, that is, maghemite and gold nanoparticles, and of a chemotherapy drug (Temozolomide) in glioblastoma tumor cells. The proposed experimental protocol provides a new way to investigate the general problem of cellular uptake for a variety of biocompatible nanostructures and drugs.


Assuntos
Compostos Férricos/metabolismo , Ouro/metabolismo , Espectroscopia de Ressonância Magnética , Nanopartículas/metabolismo , Antineoplásicos Alquilantes/farmacocinética , Linhagem Celular Tumoral , Dacarbazina/análogos & derivados , Dacarbazina/farmacocinética , Glioblastoma/tratamento farmacológico , Humanos , Espectroscopia de Ressonância Magnética/métodos , Ramnose/metabolismo , Temozolomida
13.
Parasit Vectors ; 6(1): 182, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23777746

RESUMO

BACKGROUND: Malaria represents one of the most devastating infectious diseases. The lack of an effective vaccine and the emergence of drug resistance make necessary the development of new effective control methods. The recent identification of bacteria of the genus Asaia, associated with larvae and adults of malaria vectors, designates them as suitable candidates for malaria paratransgenic control.To better characterize the interactions between Asaia, Plasmodium and the mosquito immune system we performed an integrated experimental approach. METHODS: Quantitative PCR analysis of the amount of native Asaia was performed on individual Anopheles stephensi specimens. Mosquito infection was carried out with the strain PbGFPCON and the number of parasites in the midgut was counted by fluorescent microscopy.The colonisation of infected mosquitoes was achieved using GFP or DsRed tagged-Asaia strains.Reverse transcriptase-PCR analysis, growth and phagocytosis tests were performed using An. stephensi and Drosophila melanogaster haemocyte cultures and DsRed tagged-Asaia and Escherichia coli strains. RESULTS: Using quantitative PCR we have quantified the relative amount of Asaia in infected and uninfected mosquitoes, showing that the parasite does not interfere with bacterial blooming. The correlation curves have confirmed the active replication of Asaia, while at the same time, the intense decrease of the parasite.The 'in vitro' immunological studies have shown that Asaia induces the expression of antimicrobial peptides, however, the growth curves in conditioned medium as well as a phagocytosis test, indicated that the bacterium is not an immune-target.Using fluorescent strains of Asaia and Plasmodium we defined their co-localisation in the mosquito midgut and salivary glands. CONCLUSIONS: We have provided important information about the relationship of Asaia with both Plasmodium and Anopheles. First, physiological changes in the midgut following an infected or uninfected blood meal do not negatively affect the residing Asaia population that seems to benefit from this condition. Second, Asaia can act as an immune-modulator activating antimicrobial peptide expression and seems to be adapted to the host immune response. Last, the co-localization of Asaia and Plasmodium highlights the possibility of reducing vectorial competence using bacterial recombinant strains capable of releasing anti-parasite molecules.


Assuntos
Acetobacteraceae/fisiologia , Anopheles/microbiologia , Anopheles/parasitologia , Insetos Vetores/microbiologia , Insetos Vetores/parasitologia , Malária/parasitologia , Plasmodium/fisiologia , Simbiose , Acetobacteraceae/genética , Animais , Anopheles/imunologia , Anopheles/fisiologia , Feminino , Humanos , Insetos Vetores/imunologia , Insetos Vetores/fisiologia , Larva/imunologia , Larva/microbiologia , Larva/fisiologia , Malária/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos BALB C
14.
Appl Environ Microbiol ; 79(10): 3241-8, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23503305

RESUMO

"Candidatus Midichloria mitochondrii" is an intramitochondrial bacterium of the order Rickettsiales associated with the sheep tick Ixodes ricinus. Bacteria phylogenetically related to "Ca. Midichloria mitochondrii" (midichloria and like organisms [MALOs]) have been shown to be associated with a wide range of hosts, from amoebae to a variety of animals, including humans. Despite numerous studies focused on specific members of the MALO group, no comprehensive phylogenetic and statistical analyses have so far been performed on the group as a whole. Here, we present a multidisciplinary investigation based on 16S rRNA gene sequences using both phylogenetic and statistical methods, thereby analyzing MALOs in the overall framework of the Rickettsiales. This study revealed that (i) MALOs form a monophyletic group; (ii) the MALO group is structured into distinct subgroups, verifying current genera as significant evolutionary units and identifying several subclades that could represent novel genera; (iii) the MALO group ranks at the level of described Rickettsiales families, leading to the proposal of the novel family "Candidatus Midichloriaceae." In addition, based on the phylogenetic trees generated, we present an evolutionary scenario to interpret the distribution and life history transitions of these microorganisms associated with highly divergent eukaryotic hosts: we suggest that aquatic/environmental protista have acted as evolutionary reservoirs for members of this novel family, from which one or more lineages with the capacity of infecting metazoa have evolved.


Assuntos
Alphaproteobacteria/classificação , Filogenia , Rickettsiaceae/classificação , Alphaproteobacteria/genética , Animais , Teorema de Bayes , Ecossistema , Evolução Molecular , Genes Bacterianos , Genes de RNAr , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Rickettsiaceae/genética , Carrapatos/microbiologia
15.
Ticks Tick Borne Dis ; 4(1-2): 39-45, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23238245

RESUMO

Here, we present an investigation on the spatial distribution of the bacterial symbiont Candidatus Midichloria mitochondrii within Ixodes ricinus, by whole mount fluorescence in situ hybridization (FISH). M. mitochondrii is a peculiar, recently discovered bacterium that resides in the mitochondria of female ticks. We applied a rapid and specific FISH protocol with oligonucleotide probes targeted on the 16S rRNA of M. mitochondrii, 12S rRNA of tick mitochondria, and a probe revealing active mitochondria. In this report that represents the first application of whole mount FISH on ticks, we observed strong, specific fluorescence signals in all the examined life stages, as the optimized protocol allowed us to overcome the autofluorescence interference of the cuticle. Cellular localization and quantification of the symbionts were also assessed with electron microscopy and specific real-time PCR, respectively.


Assuntos
Alphaproteobacteria/classificação , Alphaproteobacteria/isolamento & purificação , Hibridização in Situ Fluorescente/métodos , Ixodes/microbiologia , Animais , Feminino , Ixodes/ultraestrutura , RNA/genética , RNA Mitocondrial , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real , Rodopsinas Microbianas , Simbiose
16.
Microbiology (Reading) ; 158(Pt 7): 1677-1683, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22461487

RESUMO

According to Bergey's Manual of Systematic Bacteriology, the Rickettsiales are '…bacteria with typical gram-negative cell walls and no flagella'. The recently sequenced genome of 'Candidatus Midichloria mitochondrii', a divergent lineage within the order Rickettsiales capable of invading mitochondria in ixodid ticks, revealed the presence of 26 putative flagellar genes. Open questions in relation to this observation are whether these genes are expressed and whether they possess the domains expected for the flagellar function. Here we show that: (a) the putative flagellar proteins of 'Ca. M. mitochondrii' actually possess the conserved domains and structural features required for their function in a model bacterium; (b) the seven flagellar genes of 'Ca. M. mitochondrii' that have been tested are expressed at the RNA level; and (c) the putative flagellar cap gene of this bacterium (FliD) is expressed at the protein level, and can be stained within the bacterium and at its surface. Beside the specific questions that we have addressed that relate to the first evidence, to our knowledge, for a flagellar apparatus in a member of the order Rickettsiales, we present here novel tools (recombinant protein and antibodies) that will facilitate the study of 'Ca. M. mitochondrii'.


Assuntos
Alphaproteobacteria/fisiologia , Flagelos/fisiologia , Flagelina/biossíntese , Flagelina/genética , Perfilação da Expressão Gênica , Animais , Mitocôndrias/microbiologia , Carrapatos/microbiologia
17.
Mol Biol Evol ; 28(12): 3285-96, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21690562

RESUMO

The initiation of the intracellular symbiosis that would give rise to mitochondria and eukaryotes was a major event in the history of life on earth. Hypotheses to explain eukaryogenesis fall into two broad and competing categories: those proposing that the host was a phagocytotic proto-eukaryote that preyed upon the free-living mitochondrial ancestor (hereafter FMA), and those proposing that the host was an archaebacterium that engaged in syntrophy with the FMA. Of key importance to these hypotheses are whether the FMA was motile or nonmotile, and the atmospheric conditions under which the FMA thrived. Reconstructions of the FMA based on genome content of Rickettsiales representatives-generally considered to be the closest living relatives of mitochondria-indicate that it was nonmotile and aerobic. We have sequenced the genome of Candidatus Midichloria mitochondrii, a novel and phylogenetically divergent member of the Rickettsiales. We found that it possesses unique gene sets found in no other Rickettsiales, including 26 genes associated with flagellar assembly, and a cbb(3)-type cytochrome oxidase. Phylogenomic analyses show that these genes were inherited in a vertical fashion from an ancestral α-proteobacterium, and indicate that the FMA possessed a flagellum, and could undergo oxidative phosphorylation under both aerobic and microoxic conditions. These results indicate that the FMA played a more active and potentially parasitic role in eukaryogenesis than currently appreciated and provide an explanation for how the symbiosis could have evolved under low levels of oxygen.


Assuntos
Evolução Biológica , Complexo IV da Cadeia de Transporte de Elétrons/genética , Flagelos/genética , Mitocôndrias/genética , Mitocôndrias/fisiologia , Mitocôndrias/ultraestrutura , Rickettsieae/genética , Simbiose , Sequência de Bases , Células Eucarióticas , Evolução Molecular , Genoma Bacteriano , Fosforilação Oxidativa , Filogenia , Análise de Sequência de DNA , Simbiose/genética
18.
Parasitol Res ; 109(6): 1677-87, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21556683

RESUMO

The aim of this study was to determine the prevalence of sarcosporidiosis in semi-intensively bred cattle in northwestern Italy. A diagnostic protocol was setup in which infected animals were identified by rapid histological examination of the esophagus, diaphragm, and heart and the detected Sarcocystis spp. were subsequently typed using conventional electron microscopy in combination with molecular techniques. Sarcosporidia cysts were detected in 78.1% of the animals and were seen most often in the esophagus. The cattle is intermediate host for Sarcocystis hominis (final host, humans and some primates), Sarcocystis cruzi (final host, domestic and wild canids), and Sarcocystis hirsuta (final host, wild and domestic cats).All these three species of Sarcocystis were identified, variously associated, with the following prevalence: S. cruzi (74.2%), S. hirsuta (1.8%), and S. hominis (42.7%). Furthermore, a new S. hominis-like (prevalence 18.5%), characterized by hook-like structures of villar protrusion and a different sequence of the 18S rRNA gene, was identified. The cattle sheds testing positive for zoonotic Sarcocystis were assessed for risk factors contributing to the maintenance of the parasite's life cycle. Significant associations emerged between consumption of raw meat by the farm owner, mountain pasturing, and absence of a sewerage system on the farm and cattle breed. Our study demonstrates that sarcosporidiosis may constitute a public health problem in Italy and indicates several issues to be addressed when planning surveillance and prevention actions. The applied diagnostic approach revealed that cattle can harbor a further type of Sarcocystis, of which life cycle and zoonotic potential should be investigated.


Assuntos
Doenças dos Bovinos/epidemiologia , Sarcocystis/classificação , Sarcocistose/veterinária , Animais , Bovinos , Doenças dos Bovinos/parasitologia , Humanos , Itália/epidemiologia , Microscopia Eletrônica , Tipagem Molecular , Prevalência , RNA Ribossômico 18S/genética , Sarcocystis/isolamento & purificação , Sarcocistose/epidemiologia , Sarcocistose/parasitologia
19.
Environ Microbiol ; 13(4): 911-21, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21208355

RESUMO

While symbiosis between bacteria and insects has been thoroughly investigated in the last two decades, investments on the study of yeasts associated with insects have been limited. Insect-associated yeasts are placed on different branches of the phylogenetic tree of fungi, indicating that these associations evolved independently on several occasions. Isolation of yeasts is frequently reported from insect habitats, and in some cases yeasts have been detected in the insect gut and in other organs/tissues. Here we show that the yeast Wickerhamomyces anomalus, previously known as Pichia anomala, is stably associated with the mosquito Anopheles stephensi, a main vector of malaria in Asia. Wickerhamomyces anomalus colonized pre-adult stages (larvae L(1)-L(4) and pupae) and adults of different sex and age and could be isolated in pure culture. By a combination of transmission electron microscopy and fluorescent in situ hybridization techniques, W. anomalus was shown to localize in the midgut and in both the male and female reproductive systems, suggesting multiple transmission patterns.


Assuntos
Anopheles/microbiologia , Sistema Digestório/microbiologia , Genitália Feminina/microbiologia , Genitália Masculina/microbiologia , Pichia/crescimento & desenvolvimento , Animais , Ásia , DNA Fúngico/genética , Feminino , Hibridização in Situ Fluorescente , Larva/microbiologia , Masculino , Microscopia Eletrônica de Transmissão , Pichia/genética , Pichia/isolamento & purificação , Reação em Cadeia da Polimerase , Simbiose
20.
Antonie Van Leeuwenhoek ; 99(1): 43-50, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21113816

RESUMO

The genetic manipulation of the microbial community associated with hematophagus insects is particularly relevant for public health applications. Within mosquito populations, this relationship has been overlooked until recently. New advances in molecular biotechnology propose the genetic manipulation of mosquito symbionts to prevent the transmission of pathogens to humans by interfering with the obligatory life cycle stages within the insect through the use of effector molecules. This approach, defined as 'paratransgenesis', has opened the way for the investigation and characterization of microbes residing in the mosquito body, particularly those localised within the gut. Some interesting bacteria have been identified as candidates for genetic modification, however, endosymbiotic yeasts remain largely unexplored with little information on the symbiotic relationships to date. Here we review the recent report of symbiotic relationship between Wickerhamomyces anomalus (Pichia anomala) and several mosquito vector species as promising methods to implement control of mosquito-borne diseases.


Assuntos
Culicidae/microbiologia , Controle de Mosquitos/métodos , Saccharomycetales/fisiologia , Simbiose , Animais , Saccharomycetales/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA