Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Nat Commun ; 7: 12751, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27624192

RESUMO

Adrenal cortex physiology relies on functional zonation, essential for production of aldosterone by outer zona glomerulosa (ZG) and glucocorticoids by inner zona fasciculata (ZF). The cortex undergoes constant cell renewal, involving recruitment of subcapsular progenitors to ZG fate and subsequent lineage conversion to ZF identity. Here we show that WNT4 is an important driver of WNT pathway activation and subsequent ZG differentiation and demonstrate that PKA activation prevents ZG differentiation through WNT4 repression and WNT pathway inhibition. This suggests that PKA activation in ZF is a key driver of WNT inhibition and lineage conversion. Furthermore, we provide evidence that constitutive PKA activation inhibits, whereas partial inactivation of PKA catalytic activity stimulates ß-catenin-induced tumorigenesis. Together, both lower PKA activity and higher WNT pathway activity lead to poorer prognosis in adrenocortical carcinoma (ACC) patients. These observations suggest that PKA acts as a tumour suppressor in the adrenal cortex, through repression of WNT signalling.


Assuntos
Neoplasias das Glândulas Suprarrenais/etiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Via de Sinalização Wnt , Zona Fasciculada/metabolismo , Zona Glomerulosa/metabolismo , Animais , Carcinogênese , Diferenciação Celular , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Fosforilação , Zona Fasciculada/citologia , Zona Glomerulosa/citologia , beta Catenina/metabolismo
2.
Genes Dev ; 30(12): 1389-94, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27313319

RESUMO

Adrenal glands are zonated endocrine organs that are essential in controlling body homeostasis. How zonation is induced and maintained and how renewal of the adrenal cortex is ensured remain a mystery. Here we show that capsular RSPO3 signals to the underlying steroidogenic compartment to induce ß-catenin signaling and imprint glomerulosa cell fate. Deletion of RSPO3 leads to loss of SHH signaling and impaired organ growth. Importantly, Rspo3 function remains essential in adult life to ensure replenishment of lost cells and maintain the properties of the zona glomerulosa. Thus, the adrenal capsule acts as a central signaling center that ensures replacement of damaged cells and is required to maintain zonation throughout life.


Assuntos
Córtex Suprarrenal/fisiologia , Diferenciação Celular/genética , Transdução de Sinais/genética , Trombospondinas/metabolismo , Córtex Suprarrenal/citologia , Animais , Proliferação de Células , Embrião de Mamíferos , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento/genética , Homeostase/genética , Masculino , Camundongos , Trombospondinas/genética , Zona Glomerulosa/citologia , Zona Glomerulosa/metabolismo , beta Catenina/metabolismo
3.
Mol Cell Endocrinol ; 408: 145-55, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25596547

RESUMO

Adrenal and gonads are the main steroidogenic organs and are central to regulate body homeostasis in the vertebrate organism. Although adrenals and gonads are physically separated in the adult organism, both organs share a common developmental origin, the adrenogonadal primordium. One of the key genes involved in the development of both organs is the Wilms' tumor suppressor WT1, which encodes a zinc finger protein that has fascinated the scientific community for more than two decades. This review will provide an overview of the processes leading to the development of these unique organs with a particular focus on the multiple functions WT1 serves during adrenogonadal development. In addition, we will highlight some recent findings and open questions on how maintenance of steroidogenic organs is achieved in the adult organism.


Assuntos
Homeostase , Organogênese , Esteroides/biossíntese , Proteínas WT1/metabolismo , Animais , Gônadas/metabolismo , Humanos , Relação Estrutura-Atividade , Proteínas WT1/química
4.
Hum Mol Genet ; 24(2): 471-9, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25205110

RESUMO

Andersen's syndrome (AS) is a rare and dominantly inherited pathology, linked to the inwardly rectifying potassium channel Kir2.1. AS patients exhibit a triad of symptoms that include periodic paralysis, cardiac dysrhythmia and bone malformations. Some progress has been made in understanding the contribution of the Kir2.1 channel to skeletal and cardiac muscle dysfunctions, but its role in bone morphogenesis remains unclear. We isolated myoblast precursors from muscle biopsies of healthy individuals and typical AS patients with dysmorphic features. Myoblast cultures underwent osteogenic differentiation that led to extracellular matrix mineralization. Osteoblastogenesis was monitored through the activity of alkaline phosphatase, and through the hydroxyapatite formation using Alizarin Red and Von Kossa staining techniques. Patch-clamp recordings revealed the presence of an inwardly rectifying current in healthy cells that was absent in AS osteoblasts, showing the dominant-negative effect of the Kir2.1 mutant allele in osteoblasts. We also found that while control cells actively synthesize hydroxyapatite, AS osteoblasts are unable to efficiently form any extracellular matrix. To further demonstrate the role of the Kir2.1 channels during the osteogenesis, we inhibited Kir2.1 channel activity in healthy patient cells by applying extracellular Ba(2+) or using adenoviruses carrying mutant Kir2.1 channels. In both cases, cells were no longer able to produce extracellular matrixes. Moreover, osteogenic activity of AS osteoblasts was restored by rescue experiments, via wild-type Kir2.1 channel overexpression. These observations provide a proof that normal Kir2.1 channel function is essential during osteoblastogenesis.


Assuntos
Doença de Depósito de Glicogênio Tipo IV/metabolismo , Mioblastos/metabolismo , Osteogênese , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Células Cultivadas , Matriz Extracelular/metabolismo , Doença de Depósito de Glicogênio Tipo IV/genética , Doença de Depósito de Glicogênio Tipo IV/fisiopatologia , Humanos , Mioblastos/citologia , Osteoblastos/citologia , Osteoblastos/metabolismo , Técnicas de Patch-Clamp , Canais de Potássio Corretores do Fluxo de Internalização/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA