Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 265(Pt 1): 130864, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493820

RESUMO

Ketoprofen (KET), commonly used for inflammation in clinical settings, leads to systemic adverse effects with prolonged use, mitigated by topical administration. Nanotechnology-based cutaneous forms, like films, may enhance KET efficacy. Therefore, this study aimed to prepare and characterize films containing KET nanoemulsions (F-NK) regarding mechanical properties, chemical composition and interactions, occlusive potential, bioadhesion, drug permeation in human skin, and safety. The films were prepared using a κ-carrageenan and xanthan gum blend (2 % w/w, ratio 3: 1) plasticized with glycerol through the solvent casting method. Non-nanoemulsioned KET films (F-K) were prepared for comparative purposes. F-NK was flexible and hydrophilic, exhibited higher drug content and better uniformity (94.40 ± 3.61 %), maintained the NK droplet size (157 ± 12 nm), and was thinner and lighter than the F-K. This film also showed increased tensile strength and Young's modulus values, enhanced bioadhesion and occlusive potential, and resulted in more of the drug in the human skin layers. Data also suggested that nano-based formulations are homogeneous and more stable than F-KET. Hemolysis and chorioallantoic membrane tests suggested the formulations' safety. Thus, the nano-based film is suitable for cutaneous KET delivery, which may improve the drug's efficacy in managing inflammatory conditions.


Assuntos
Cetoprofeno , Nanocompostos , Polissacarídeos Bacterianos , Humanos , Cetoprofeno/farmacologia , Cetoprofeno/química , Carragenina/química , Pele , Nanocompostos/química
2.
Int J Biol Macromol ; 257(Pt 2): 128701, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072348

RESUMO

Trichomoniasis is a common sexually transmitted infection that poses significant complications for women. Challenges in treatment include adverse effects and resistance to standard antimicrobial agents. Given this context, a sesame seed oil nanoemulsion (SONE) was developed and showed anti-Trichomonas vaginalis activity. To facilitate the local application of SONE, a polysaccharide film was developed using xanthan gum (XG) and κ-carrageenan gum (CG). A blend of XG and CG (at 2 %, ratio 1:3) plasticized with glycerol produced a more promising film (XCF) than using the gums individually. The film containing SONE (SONE-XCF) was successfully obtained by replacing the aqueous solvent with SONE via solvent evaporation technique. The hydrophilic SONE-XCF exhibited homogeneity and suitable mechanical properties for vaginal application. Furthermore, SONE-XCF demonstrated mucoadhesive properties and high absorption capacity for excessive vaginal fluids produced in vaginitis. It also had a disintegration time of over 8 h, indicating long retention at the intended site of action. Hemolysis and chorioallantoic membrane tests confirmed the safety of the film. Therefore, SONE-XCF is a biocompatible film with a natural composition and inherent activity against T. vaginalis, possessing exceptional characteristics that make it appropriate for vaginal application, offering an interesting alternative for trichomoniasis treatment.


Assuntos
Nanocompostos , Sesamum , Tricomoníase , Feminino , Humanos , Carragenina , Prednisona , Polissacarídeos Bacterianos , Solventes , Preparações Farmacêuticas , Óleos de Plantas/farmacologia
3.
Pharmaceutics ; 15(9)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37765203

RESUMO

This study aimed to incorporate nanocapsules containing 3,3'-diindolylmethane (DIM) with antitumor activity into a bilayer film of karaya and gellan gums for use in topical melanoma therapy. Nanocarriers and films were prepared by interfacial deposition of the preformed polymer and solvent casting methods, respectively. Incorporating DIM into nanocapsules increased its antitumor potential against human melanoma cells (A-375) (IC50 > 24.00 µg/mL free DIM × 2.89 µg/mL nanocapsules). The films were transparent, hydrophilic (θ < 90°), had homogeneous thickness and weight, and had a DIM content of 106 µg/cm2. Radical ABTS+ scavenger assay showed that the DIM films presented promising antioxidant action. Remarkably, the films showed selective bioadhesive potential on the karaya gum side. Considering the mechanical analyses, the nanotechnology-based films presented appropriate behavior for cutaneous application and controlled DIM release profile, which could increase the residence time on the application site. Furthermore, the nanofilms were found to increase the permeation of DIM into the epidermis, where melanoma develops. Lastly, the films were non-hemolytic (hemolysis test) and non-irritant (HET-CAM assay). In summary, the combination of karaya and gellan gum in bilayer films that contain nanoencapsulated DIM has demonstrated potential in the topical treatment of melanoma and could serve as a viable option for administering DIM for cutaneous melanoma therapy.

4.
Drug Deliv Transl Res ; 12(12): 2907-2919, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35499713

RESUMO

Pullulan (PUL) films containing pomegranate seed oil and Eudragit® RS100 nanocapsules loaded with clotrimazole (CTZ-NC-PUL) were developed to treat vulvovaginal candidiasis (VVC). Our findings showed that the nanocapsule average diameter was around 163 ± 4 nm, with polydispersity index values of up to 0.1 ± 0.01 and positively charged zeta potential (+ 43.5 ± 0.7 mV). The pH was in the acid range (5.14 ± 0.12) and encapsulation efficiency was around 99.6%; CTZ nanoencapsulation promoted higher homogeneity values for the film (91%), and the stability studies displayed no changes in the drug content after 120 days for the CTZ-NC-PUL under refrigerated conditions. All formulations were considered non-irritant, and CTZ-NC-PUL promoted a controlled release of the drug (60% in 24 h) compared to CTZ-PUL (100% in 8 h). The permeation results corroborate the drug release, where higher CTZ amounts were found in the mucosa and receptor medium for CTZ-PUL (21.02 and 4.46 µg/cm2). The films were fast dissolving (10 min), and CTZ-NC-PUL presented higher mucoadhesive properties; the antifungal activity against Candida albicans was maintained, and the in vitro efficacy of the film was proved. In conclusion, CTZ-NC-PUL formulation was considered promising and suitable for vaginal application against candida-related infections.


Assuntos
Candidíase Vulvovaginal , Candidíase , Nanocápsulas , Feminino , Humanos , Gravidez , Clotrimazol/farmacologia , Clotrimazol/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candidíase Vulvovaginal/tratamento farmacológico , Candidíase Vulvovaginal/microbiologia , Candida albicans , Candidíase/tratamento farmacológico , Parto Obstétrico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA