RESUMO
Photosynthetic light-harvesting antennae are pigment-binding proteins that perform one of the most fundamental tasks on Earth, capturing light and transferring energy that enables life in our biosphere. Adaptation to different light environments led to the evolution of an astonishing diversity of light-harvesting systems. At the same time, several strategies have been developed to optimize the light energy input into photosynthetic membranes in response to fluctuating conditions. The basic feature of these prompt responses is the dynamic nature of antenna complexes, whose function readily adapts to the light available. High-resolution microscopy and spectroscopic studies on membrane dynamics demonstrate the crosstalk between antennae and other thylakoid membrane components. With the increased understanding of light-harvesting mechanisms and their regulation, efforts are focusing on the development of sustainable processes for effective conversion of sunlight into functional bio-products. The major challenge in this approach lies in the application of fundamental discoveries in light-harvesting systems for the improvement of plant or algal photosynthesis. Here, we underline some of the latest fundamental discoveries on the molecular mechanisms and regulation of light harvesting that can potentially be exploited for the optimization of photosynthesis.
Assuntos
Complexos de Proteínas Captadores de Luz , Fotossíntese , Adaptação Fisiológica , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese/fisiologia , Plantas/metabolismo , Tilacoides/metabolismoRESUMO
The photosystem II reaction centre (RCII) protein subunit D1 is the main target of light-induced damage in the thylakoid membrane. As such, it is constantly replaced with newly synthesised proteins, in a process dubbed the 'D1 repair cycle'. The mechanism of relief of excitation energy pressure on RCII, non-photochemical quenching (NPQ), is activated to prevent damage. The contribution of the D1 repair cycle and NPQ in preserving the photochemical efficiency of RCII is currently unclear. In this work, we seek to (1) quantify the relative long-term effectiveness of photoprotection offered by NPQ and the D1 repair cycle, and (2) determine the fraction of sustained decrease in RCII activity that is due to long-term protective processes. We found that while under short-term, sunfleck-mimicking illumination, NPQ is substantially more effective in preserving RCII activity than the D1 repair cycle (Plant. Cell Environ.41, 1098-1112, 2018). Under prolonged constant illumination, its contribution is less pronounced, accounting only for up to 30% of RCII protection, while D1 repair assumes a predominant role. Exposure to a wide range of light intensities yields comparable results, highlighting the crucial role of a constant and rapid D1 turnover for the maintenance of RCII efficiency. The interplay between NPQ and D1 repair cycle is crucial to grant complete phototolerance to plants under low and moderate light intensities, and limit damage to photosystem II under high light. Additionally, we disentangled and quantified the contribution of a slowly reversible NPQ component that does not impair RCII activity, and is therefore protective.
Assuntos
Complexo de Proteína do Fotossistema II , Tilacoides , Luz , Células Vegetais , Subunidades ProteicasRESUMO
Photosystem II (PSII) uses light energy to split water into protons, electrons, and oxygen, ultimately sustaining heterotrophic life on Earth. The major light harvesting complex in plants (LHCII) is packed with chlorophylls and carotenoids and is the main supplier of excitation energy to PSII reaction centers. The protein scaffold acts as a programmed solvent for the pigments in LHCII, tuning their orientations while at the same time impeding concentration quenching to ensure efficient storage of excitation energy by chlorophylls. However, under stress, the very fuel of PSII, solar photons, can damage its delicate inner components and hamper photosynthesis. In a crucial regulatory strategy in plants, LHCII evolved a flexible design that allows it to switch between light-harvesting and dissipative conformations, thereby safely releasing the excess energy that is absorbed into heat. Several mechanisms have been proposed to explain chlorophyll de-excitation pathways in LHCII, such as chlorophyll-chlorophyll charge transfer states, resonance energy transfer from chlorophylls to a carotenoid S1 state, and chlorophyll-carotenoid reductive energy transfer. This Perspective critically assesses the listed proposals, addressing both the physical mechanism of quenching and the nature of the quenching pigment. These hypotheses are then discussed in the context of state-of-the-art biochemical, physiological, and genetic knowledge to scrutinize their likeliness to occur in the native thylakoid membranes.
RESUMO
Plant tolerance to high light and oxidative stress is increased by overexpression of the photosynthetic enzyme Ferredoxin:NADP(H) reductase (FNR), but the specific mechanism of FNR-mediated protection remains enigmatic. It has also been reported that the localization of this enzyme within the chloroplast is related to its role in stress tolerance. Here, we dissected the impact of FNR content and location on photoinactivation of photosystem I (PSI) and photosystem II (PSII) during high light stress of Arabidopsis (Arabidopsis thaliana). The reaction center of PSII is efficiently turned over during light stress, while damage to PSI takes much longer to repair. Our results indicate a PSI sepcific effect, where efficient oxidation of the PSI primary donor (P700) upon transition from darkness to light, depends on FNR recruitment to the thylakoid membrane tether proteins: thylakoid rhodanase-like protein (TROL) and translocon at the inner envelope of chloroplasts 62 (Tic62). When these interactions were disrupted, PSI photoinactivation occurred. In contrast, there was a moderate delay in the onset of PSII damage. Based on measurements of ΔpH formation and cyclic electron flow, we propose that FNR location influences the speed at which photosynthetic control is induced, resulting in specific impact on PSI damage. Membrane tethering of FNR therefore plays a role in alleviating high light stress, by regulating electron distribution during short-term responses to light.
Assuntos
Adaptação Ocular/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Ferredoxina-NADP Redutase/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Adaptação Ocular/genética , Cloroplastos/genética , Ferredoxina-NADP Redutase/genética , Variação Genética , Genótipo , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema II/genéticaRESUMO
During photosynthesis, electron transport is necessary for carbon assimilation and must be regulated to minimize free radical damage. There is a longstanding controversy over the role of a critical enzyme in this process (ferredoxin:NADP(H) oxidoreductase, or FNR), and in particular its location within chloroplasts. Here we use immunogold labelling to prove that FNR previously assigned as soluble is in fact membrane associated. We combined this technique with a genetic approach in the model plant Arabidopsis to show that the distribution of this enzyme between different membrane regions depends on its interaction with specific tether proteins. We further demonstrate a correlation between the interaction of FNR with different proteins and the activity of alternative photosynthetic electron transport pathways. This supports a role for FNR location in regulating photosynthetic electron flow during the transition from dark to light.
Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Elétrons , Ferredoxina-NADP Redutase/genética , Fotossíntese , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Cloroplastos/metabolismo , Ferredoxina-NADP Redutase/metabolismo , FotoperíodoRESUMO
Photosynthesis in plants starts with the capture of photons by light-harvesting complexes (LHCs). Structural biology and spectroscopy approaches have led to a map of the architecture and energy transfer pathways between LHC pigments. Still, controversies remain regarding the role of specific carotenoids in light-harvesting and photoprotection, obligating the need for high-resolution techniques capable of identifying excited-state signatures and molecular identities of the various pigments in photosynthetic systems. Here we demonstrate the successful application of femtosecond stimulated Raman spectroscopy (FSRS) to a multichromophoric biological complex, trimers of LHCII. We demonstrate the application of global and target analysis (GTA) to FSRS data and utilize it to quantify excitation migration in LHCII trimers. This powerful combination of techniques allows us to obtain valuable insights into structural, electronic, and dynamic information from the carotenoids of LHCII trimers. We report spectral and dynamical information on ground- and excited-state vibrational modes of the different pigments, resolving the vibrational relaxation of the carotenoids and the pathways of energy transfer to chlorophylls. The lifetimes and spectral characteristics obtained for the S1 state confirm that lutein 2 has a distorted conformation in LHCII and that the lutein 2 S1 state does not transfer to chlorophylls, while lutein 1 is the only carotenoid whose S1 state plays a significant energy-harvesting role. No appreciable energy transfer takes place from lutein 1 to lutein 2, contradicting recent proposals regarding the functions of the various carotenoids (Son et al. Chem. 2019, 5 (3), 575-584). Also, our results demonstrate that FSRS can be used in combination with GTA to simultaneously study the electronic and vibrational landscapes in LHCs and pave the way for in-depth studies of photoprotective conformations in photosynthetic systems.
RESUMO
The major light-harvesting complex of photosystem II (LHCII) is the main contributor to sunlight energy harvesting in plants. The flexible design of LHCII underlies a photoprotective mechanism whereby this complex switches to a dissipative state in response to high light stress, allowing the rapid dissipation of excess excitation energy (non-photochemical quenching, NPQ). In this work, we locked single LHCII trimers in a quenched conformation after immobilization of the complexes in polyacrylamide gels to impede protein interactions. A comparison of their pigment excited-state dynamics with quenched LHCII aggregates in buffer revealed the presence of a new spectral band at 515 nm arising after chlorophyll excitation. This is suggested to be the signature of a carotenoid excited state, linked to the quenching of chlorophyll singlet excited states. Our data highlight the marked sensitivity of pigment excited-state dynamics in LHCII to structural changes induced by the environment.
RESUMO
Xanthophylls in light harvesting complexes perform a number of functions ranging from structural support to light-harvesting and photoprotection. In the major light harvesting complex of photosystem II in plants (LHCII), the innermost xanthophyll binding pockets are occupied by lutein molecules. The conservation of these sites within the LHC protein family suggests their importance in LHCII functionality. In the present work, we induced the photoprotective switch in LHCII isolated from the Arabidopsis mutant npq1lut2, where the lutein molecules are exchanged with violaxanthin. Despite the differences in the energetics of the pigments and the impairment of chlorophyll fluorescence quenching in vivo, we show that isolated complexes containing violaxanthin are still able to induce the quenching switch to a similar extent to wild type LHCII monomers. Moreover, the same spectroscopic changes take place, which suggest the involvement of the terminal emitter site (L1) in energy dissipation in both complexes. These results indicate the robust nature of the L1 xanthophyll binding domain in LHCII, where protein structural cues are the major determinant of the function of the bound carotenoid.
Assuntos
Complexo de Proteína do Fotossistema II/metabolismo , Xantofilas/metabolismo , Arabidopsis/química , Luteína/química , Luteína/metabolismo , Processos Fotoquímicos , Complexo de Proteína do Fotossistema II/química , Xantofilas/químicaRESUMO
Plants are subject to dramatic fluctuations in the intensity of sunlight throughout the day. When the photosynthetic machinery is exposed to high light, photons are absorbed in excess, potentially leading to oxidative damage of its delicate membrane components. A photoprotective molecular process called non-photochemical quenching (NPQ) is the fastest response carried out in the thylakoid membranes to harmlessly dissipate excess light energy. Despite having been intensely studied, the site and mechanism of this essential regulatory process are still debated. Here, we show that the main NPQ component called energy-dependent quenching (qE) is present in plants with photosynthetic membranes largely enriched in the major trimeric light-harvesting complex (LHC) II, while being deprived of all minor LHCs and most photosystem core proteins. This fast and reversible quenching depends upon thylakoid lumen acidification (ΔpH). Enhancing ΔpH amplifies the extent of the quenching and restores qE in the membranes lacking PSII subunit S protein (PsbS), whereas the carotenoid zeaxanthin modulates the kinetics and amplitude of the quenching. These findings highlight the self-regulatory properties of the photosynthetic light-harvesting membranes in vivo, where the ability to switch reversibly between the harvesting and dissipative states is an intrinsic property of the major LHCII.
Assuntos
Arabidopsis , Complexos de Proteínas Captadores de Luz , Arabidopsis/metabolismo , Clorofila , Luz , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Xantofilas/metabolismo , Zeaxantinas/metabolismoRESUMO
The photosynthetic apparatus of plants is a robust self-adjustable molecular system, able to function efficiently under varying environmental conditions. Under strong sunlight, it switches into photoprotective mode to avoid overexcitation by safely dissipating the excess absorbed light energy via nonphotochemical quenching (NPQ). Unfortunately, heterogeneous organization and simultaneous occurrence of multiple processes within the thylakoid membrane impede the study of natural NPQ under in vivo conditions; thus, usually artificially prepared antennae have been studied instead. However, it has never been shown directly that the origin of fluorescence quenching observed in these artificial systems underlies natural NPQ. Here we report the time-resolved fluorescence measurements of the dark-adapted and preilluminated-to induce NPQ-intact chloroplasts, performed over a broad temperature range. We show that their spectral response matches that observed in the LHCII aggregates, thus demonstrating explicitly for the first time that the latter in vitro system preserves essential properties of natural photoprotection.
Assuntos
Cloroplastos/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese , Arabidopsis/metabolismo , Cloroplastos/efeitos dos fármacos , Luz , Complexos de Proteínas Captadores de Luz/química , Lincomicina/farmacologia , Fotossíntese/efeitos dos fármacos , Plantas/metabolismo , Espectrometria de Fluorescência , TemperaturaRESUMO
Chlorophyll triplet excited states are byproducts of photosynthetic processes that can indirectly harm biological membranes by forming highly reactive oxygen species. A crucial photoprotective mechanism evolved by plants to counter this threat involves the triplet energy transfer from chlorophylls to carotenoid molecules, in which triplet states are not reactive. In the major light-harvesting complex of photosystem II (LHCII), the two central luteins play an important role in the mechanism, but it has been shown that carotenoid triplets are formed even when other carotenoids replace them in their binding sites. In this work, we have investigated carotenoid triplet formation in LHCII isolated from Arabidopsis thaliana npq1lut2 plants, in which violaxanthin replaces lutein. Although transient absorption spectroscopy showed altered singlet excited-state dynamics in the mutant LHCII without lutein, these antennae formed carotenoid triplets that were spectrally and dynamically identical to the wild-type protein. We conclude that lutein-binding sites in LHCII have conserved characteristics to ensure efficient triplet energy transfer to the carotenoid molecules that they accommodate, making the identity of the carotenoid trivial per se.
Assuntos
Carotenoides/química , Complexos de Proteínas Captadores de Luz/metabolismo , Luteína/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Carotenoides/metabolismo , Clorofila A/química , Clorofila A/metabolismo , Complexos de Proteínas Captadores de Luz/química , Luteína/química , Luteína/genética , Mutação , Análise Espectral/métodos , Xantofilas/química , Xantofilas/metabolismoRESUMO
Plants have developed multiple self-regulatory mechanisms to efficiently function under varying sunlight conditions. At high light intensities, non-photochemical quenching (NPQ) is activated on a molecular level, safely dissipating an excess excitation as heat. The exact molecular mechanism for NPQ is still under debate, but it is widely agreed that the direct participation of the carotenoid pigments is involved, one of the proposed candidate being the zeaxanthin. In this work, we performed fluorescence measurements of violaxanthin- and zeaxanthin-enriched major light-harvesting complexes (LHCII), in ensemble and at the single pigment-protein complex level, where aggregation is prevented by immobilization of LHCIIs onto a surface. We show that a selective enrichment of LHCII with violaxanthin or zeaxanthin affects neither the ability of LHCII to switch into a dissipative conformation nor the maximal level of induced quenching. However, the kinetics of the fluorescence decrease due to aggregation on the timescale of seconds are different, prompting towards a modulatory effect of zeaxanthin in the dynamics of quenching.
Assuntos
Complexos de Proteínas Captadores de Luz/metabolismo , Zeaxantinas/metabolismo , Adaptação Fisiológica/fisiologia , Concentração de Íons de Hidrogênio , Luz , Complexos de Proteínas Captadores de Luz/química , Folhas de Planta , Conformação Proteica , Espectrometria de Fluorescência , Spinacia oleracea , Tilacoides/química , Tilacoides/metabolismo , Xantofilas/química , Xantofilas/metabolismo , Zeaxantinas/químicaRESUMO
Non-photochemical quenching (NPQ) of chlorophyll fluorescence is the process by which excess light energy is harmlessly dissipated within the photosynthetic membrane. The fastest component of NPQ, known as energy-dependent quenching (qE), occurs within minutes, but the site and mechanism of qE remain of great debate. Here, the chlorophyll fluorescence of Arabidopsis thaliana wild type (WT) plants was compared to mutants lacking all minor antenna complexes (NoM). Upon illumination, NoM exhibits altered chlorophyll fluorescence quenching induction (i.e. from the dark-adapted state) characterised by three different stages: (i) a fast quenching component, (ii) transient fluorescence recovery and (iii) a second quenching component. The initial fast quenching component originates in light harvesting complex II (LHCII) trimers and is dependent upon PsbS and the formation of a proton gradient across the thylakoid membrane (ΔpH). Transient fluorescence recovery is likely to occur in both WT and NoM plants, but it cannot be overcome in NoM due to impaired ΔpH formation and a reduced zeaxanthin synthesis rate. Moreover, an enhanced fluorescence emission peak at ~679â¯nm in NoM plants indicates detachment of LHCII trimers from the bulk antenna system, which could also contribute to the transient fluorescence recovery. Finally, the second quenching component is triggered by both ΔpH and PsbS and enhanced by zeaxanthin synthesis. This study indicates that minor antenna complexes are not essential for qE, but reveals their importance in electron stransport, ΔpH formation and zeaxanthin synthesis.