Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
BMC Plant Biol ; 24(1): 124, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38373874

RESUMO

BACKGROUND: Rice (Oryza sativa L.) is one of the globally important staple food crops, and yield-related traits are prerequisites for improved breeding efficiency in rice. Here, we used six different genome-wide association study (GWAS) models for 198 accessions, with 553,229 single nucleotide markers (SNPs) to identify the quantitative trait nucleotides (QTNs) and candidate genes (CGs) governing rice yield. RESULTS: Amongst the 73 different QTNs in total, 24 were co-localized with already reported QTLs or loci in previous mapping studies. We obtained fifteen significant QTNs, pathway analysis revealed 10 potential candidates within 100kb of these QTNs that are predicted to govern plant height, days to flowering, and plot yield in rice. Based on their superior allelic information in 20 elite and 6 inferior genotypes, we found a higher percentage of superior alleles in the elite genotypes in comparison to inferior genotypes. Further, we implemented expression analysis and enrichment analysis enabling the identification of 73 candidate genes and 25 homologues of Arabidopsis, 19 of which might regulate rice yield traits. Of these candidate genes, 40 CGs were found to be enriched in 60 GO terms of the studied traits for instance, positive regulator metabolic process (GO:0010929), intracellular part (GO:0031090), and nucleic acid binding (GO:0090079). Haplotype and phenotypic variation analysis confirmed that LOC_OS09G15770, LOC_OS02G36710 and LOC_OS02G17520 are key candidates associated with rice yield. CONCLUSIONS: Overall, we foresee that the QTNs, putative candidates elucidated in the study could summarize the polygenic regulatory networks controlling rice yield and be useful for breeding high-yielding varieties.


Assuntos
Estudo de Associação Genômica Ampla , Oryza , Mapeamento Cromossômico , Oryza/genética , Melhoramento Vegetal , Locos de Características Quantitativas/genética
2.
Front Plant Sci ; 14: 1304388, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38273959

RESUMO

Improving the quality of the appearance of rice is critical to meet market acceptance. Mining putative quality-related genes has been geared towards the development of effective breeding approaches for rice. In the present study, two SL-GWAS (CMLM and MLM) and three ML-GWAS (FASTmrEMMA, mrMLM, and FASTmrMLM) genome-wide association studies were conducted in a subset of 3K-RGP consisting of 198 rice accessions with 553,831 SNP markers. A total of 594 SNP markers were identified using the mixed linear model method for grain quality traits. Additionally, 70 quantitative trait nucleotides (QTNs) detected by the ML-GWAS models were strongly associated with grain aroma (AR), head rice recovery (HRR, %), and percentage of grains with chalkiness (PGC, %). Finally, 39 QTNs were identified using single- and multi-locus GWAS methods. Among the 39 reliable QTNs, 20 novel QTNs were identified for the above-mentioned three quality-related traits. Based on annotation and previous studies, four functional candidate genes (LOC_Os01g66110, LOC_Os01g66140, LOC_Os07g44910, and LOC_Os02g14120) were found to influence AR, HRR (%), and PGC (%), which could be utilized in rice breeding to improve grain quality traits.

3.
PLoS One ; 15(7): e0234550, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32663226

RESUMO

Chickpea has a profound nutritional and economic value in vegetarian society. Continuous decline in chickpea productivity is attributed to insufficient genetic variability and different environmental stresses. Chickpea like several other legumes is highly susceptible to terminal drought stress. Multiple genes control drought tolerance and ASR gene plays a key role in regulating different plant stresses. The present study describes the molecular characterization and functional role of Abscissic acid and stress ripening (ASR) gene from chickpea (Cicer arietinum) and the gene sequence identified was submitted to NCBI Genbank (MK937569). Molecular analysis using MUSCLE software proved that the ASR nucleotide sequences in different legumes show variations at various positions though ASR genes are conserved in chickpea with only few variations. Sequence similarity of ASR gene to chickpea putative ABA/WDS induced protein mRNA clearly indicated its potential involvement in drought tolerance. Physiological screening and qRT-PCR results demonstrated increased ASR gene expression under drought stress possibly enabled genotypes to perform better under stress. Conserved domain search, protein structure analysis, prediction and validation, network analysis using Phyre2, Swiss-PDB viewer, ProSA and STRING analysis established the role of hypothetical ASR protein NP_001351739.1 in mediating drought responses. NP_001351739.1 might have enhanced the ASR gene activity as a transcription factor regulating drought stress tolerance in chickpea. This study could be useful in identification of new ASR genes that play a major role in drought tolerance and also develop functional markers for chickpea improvement.


Assuntos
Cicer/genética , Regulação da Expressão Gênica de Plantas/genética , Estresse Fisiológico/genética , Ácido Abscísico/farmacologia , Adaptação Fisiológica/genética , Sequência de Bases/genética , Cicer/crescimento & desenvolvimento , Secas , Perfilação da Expressão Gênica/métodos , Genótipo , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Fatores de Transcrição/metabolismo
4.
Theor Appl Genet ; 133(5): 1703-1720, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32253478

RESUMO

KEY MESSAGE: Integration of genomic technologies with breeding efforts have been used in recent years for chickpea improvement. Modern breeding along with low cost genotyping platforms have potential to further accelerate chickpea improvement efforts. The implementation of novel breeding technologies is expected to contribute substantial improvements in crop productivity. While conventional breeding methods have led to development of more than 200 improved chickpea varieties in the past, still there is ample scope to increase productivity. It is predicted that integration of modern genomic resources with conventional breeding efforts will help in the delivery of climate-resilient chickpea varieties in comparatively less time. Recent advances in genomics tools and technologies have facilitated the generation of large-scale sequencing and genotyping data sets in chickpea. Combined analysis of high-resolution phenotypic and genetic data is paving the way for identifying genes and biological pathways associated with breeding-related traits. Genomics technologies have been used to develop diagnostic markers for use in marker-assisted backcrossing programmes, which have yielded several molecular breeding products in chickpea. We anticipate that a sequence-based holistic breeding approach, including the integration of functional omics, parental selection, forward breeding and genome-wide selection, will bring a paradigm shift in development of superior chickpea varieties. There is a need to integrate the knowledge generated by modern genomics technologies with molecular breeding efforts to bridge the genome-to-phenome gap. Here, we review recent advances that have led to new possibilities for developing and screening breeding populations, and provide strategies for enhancing the selection efficiency and accelerating the rate of genetic gain in chickpea.


Assuntos
Cicer/crescimento & desenvolvimento , Cicer/genética , Genoma de Planta , Genômica/métodos , Melhoramento Vegetal/normas , Plantas Geneticamente Modificadas/genética , Locos de Características Quantitativas , Genética Populacional , Fenótipo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA