Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mass Spectrom Rev ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38576378

RESUMO

Affinity photolabeling is a smart method to study noncovalent and transient interactions and provide a submolecular picture of the contacts between interacting partners. In this review, we will focus on the identification of peptide partners using photoaffinity labeling coupled to mass spectrometry in different contexts such as in vitro with a purified potential partner, in model systems such as model membranes, and with live cells using both targeted and nontargeted proteomics studies. Different biological partners will be described, among which glycoconjugates, oligonucleotides, peptides, proteins, and lipids, with the photoreactive label inserted either on the peptide of interest or on the potential partner. Particular attention will be paid to the observation and characterization of specific rearrangements following the photolabeling reaction, which can help characterize photoadducts and provide a better understanding of the interacting systems and environment.

2.
Chemistry ; 30(19): e202302807, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38305813

RESUMO

α-Silylated diazoalkynes are stabilized diazo compounds that can selectively react with carboxylic residues in buffered aqueous media. In-situ fluoride induced desilylation increases this reactivity, leading to a very fast reaction. Application to the selective functionalization of RNase A, followed by post-functionalization using click chemistry, is described. These new reagents expand the toolbox for native protein modification at carboxylic residues.


Assuntos
Compostos Azo , Proteínas , Proteínas/química , Processamento de Proteína Pós-Traducional , Fluoretos/química , Química Click
3.
Int J Inflam ; 2024: 2205864, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250663

RESUMO

Inflammatory and antimicrobial diseases constitute a major burden for society, and fighting them is a WHO strategic priority. Most of the treatments available to fight inflammatory diseases are anti-inflammatory drugs, such as corticosteroids or immunomodulators that lack cellular specificity and lead to numerous side effects. In addition to suppressing undesired inflammation and reducing disease progression, these drugs lessen the immune system protective functions. Furthermore, treating infectious diseases is more and more challenging due to the rise of microbial resistance to antimicrobial drugs. Thus, controlling the inflammatory process locally without compromising the ability to combat infections is an essential feature in the treatment of inflammatory diseases. We isolated three forms (DRS-DA2N, DRS-DA2NE, and DRS-DA2NEQ) of the same peptide, DRS-DA2, which belongs to the dermaseptin family, from the Mexican tree frog Pachymedusa dacnicolor. Interestingly, DRS-DA2N and DRS-DA2NEQ exhibit a dual activity by inducing the death of leukocytes as well as that of Gram-negative and Gram-positive bacteria, including multiresistant strains, without affecting other cells such as epithelial cells or erythrocytes. We showed that the death of both immune cells and bacteria is induced rapidly by DRS-DA2 and that the membrane is permeabilized, leading to the loss of membrane integrity. We also validated the capacity of DRS-DA2 to regulate the pool of inflammatory cells in vivo in a mouse model of noninfectious peritonitis. After the induction of peritonitis, a local injection of DRS-DA2N could decrease the number of inflammatory cells locally in the peritoneal cavity without inducing a systemic effect, as no changes in the number of inflammatory cells could be detected in blood or in the bone marrow. Collectively, these data suggest that this peptide could be a promising tool in the treatment of inflammatory diseases, such as inflammatory skin diseases, as it could reduce the number of inflammatory cells locally without suppressing the ability to combat infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA