Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 55(8): 4462-4473, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33759511

RESUMO

Nitrous oxide (N2O) is a long-lived greenhouse gas that also destroys stratospheric ozone. N2O emissions are uncertain and characterized by high spatiotemporal variability, making individual observations difficult to upscale, especially in mixed land use source regions like the San Joaquin Valley (SJV) of California. Here, we calculate spatially integrated N2O emission rates using nocturnal and convective boundary-layer budgeting methods. We utilize vertical profile measurements from the NASA DISCOVER-AQ (Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality) campaign, which took place January-February, 2013. For empirical constraints on N2O source identity, we analyze N2O enhancement ratios with methane, ammonia, carbon dioxide, and carbon monoxide separately in the nocturnal boundary layer, nocturnal residual layer, and convective boundary layer. We find that an established inventory (EDGAR v4.3.2) underestimates N2O emissions by at least a factor of 2.5, that wintertime emissions from animal agriculture are important to annual totals, and that there is evidence for higher N2O emissions during the daytime than at night.


Assuntos
Poluentes Atmosféricos , Óxido Nitroso , Agricultura , Poluentes Atmosféricos/análise , Aeronaves , Animais , California , Metano/análise , Óxido Nitroso/análise
2.
Environ Sci Technol ; 43(4): 1055-60, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19320157

RESUMO

We use recent aircraft measurements of a comprehensive suite of anthropogenic halocarbons, carbon monoxide (CO), and related tracers to place new constraints on North American halocarbon emissions and quantify their global warming potential. Using a chemical transport model (GEOS-Chem) we find that the ensemble of observations are consistent with our prior best estimate of the U.S. anthropogenic CO source, but suggest a 30% underestimate of Mexican emissions. We develop an optimized CO emission inventory on this basis and quantify halocarbon emissions from their measured enhancements relative to CO. Emissions continue for many compounds restricted under the Montreal Protocol, and we show that halocarbons make up an important fraction of the total greenhouse gas source for both countries: our best estimate is 9% (uncertainty range 6-12%) and 32% (21-52%) of equivalent CO2 emissions for the U.S. and Mexico, respectively, on a 20 year time scale. Performance of bottom-up emission inventories is variable, with underestimates for some compounds and overestimates for others. Ongoing methylchloroform emissions are significant in the U.S. (2.8 Gg/y in 2004-2006), in contrast to bottom-up estimates (< 0.05 Gg), with implications for tropospheric OH calculations. Mexican methylchloroform emissions are minor.


Assuntos
Poluentes Atmosféricos/análise , Efeito Estufa , Hidrocarbonetos Halogenados/análise , Monóxido de Carbono/análise , Clorofluorcarbonetos/análise , Etano Clorofluorcarbonos , Radical Hidroxila/análise , México , Tricloroetanos/análise , Estados Unidos
3.
Science ; 315(5813): 816-20, 2007 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-17204609

RESUMO

We present a statistical representation of the aggregate effects of deep convection on the chemistry and dynamics of the upper troposphere (UT) based on direct aircraft observations of the chemical composition of the UT over the eastern United States and Canada during summer. These measurements provide unique observational constraints on the chemistry occurring downwind of convection and the rate at which air in the UT is recycled. These results provide quantitative measures that can be used to evaluate global climate and chemistry models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA