Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Plant Physiol ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775665

RESUMO

Leaf surface conductance to water vapor and CO2 across the epidermis (gleaf) strongly determines rates of gas exchange. Thus, clarifying the drivers of gleaf has important implications for resolving mechanisms of photosynthetic productivity and leaf and plant responses and tolerance to drought. It is well recognized that gleaf is a function of the conductances of the stomata (gs) and of the epidermis + cuticle (gec). Yet, controversies have arisen around the relative roles of stomatal density (d) and size (s), fractional stomatal opening (α; aperture relative to maximum) and gec in determining gleaf. Resolving the importance of these drivers is critical across the range of leaf surface conductances, from strong stomatal closure under drought (gleaf, min), to typical opening for photosynthesis (gleaf, op), to maximum achievable opening (gleaf, max). We derived equations and analyzed a compiled database of published and measured data for approximately 200 species and genotypes. On average, within and across species, higher gleaf, min was determined ten times more strongly by α and gec than by d, and negligibly by s; higher gleaf, op was determined approximately equally by α (47%) than by stomatal anatomy (45% by d, and 8% by s), and negligibly by gec; and higher gleaf, max was determined entirely by d. These findings clarify how diversity in stomatal functioning arises from multiple structural and physiological causes with importance shifting with context. The rising importance of d relative to α, from gleaf, min to gleaf, op, enables even species with low gleaf, min, which can retain leaves through drought, to possess high d and thereby achieve rapid gas exchange in periods of high water availability.

2.
Am J Bot ; 111(5): e16328, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38727415

RESUMO

PREMISE: Previous studies have suggested a trade-off between trichome density (Dt) and stomatal density (Ds) due to shared cell precursors. We clarified how, when, and why this developmental trade-off may be overcome across species. METHODS: We derived equations to determine the developmental basis for Dt and Ds in trichome and stomatal indices (it and is) and the sizes of epidermal pavement cells (e), trichome bases (t), and stomata (s) and quantified the importance of these determinants of Dt and Ds for 78 California species. We compiled 17 previous studies of Dt-Ds relationships to determine the commonness of Dt-Ds associations. We modeled the consequences of different Dt-Ds associations for plant carbon balance. RESULTS: Our analyses showed that higher Dt was determined by higher it and lower e, and higher Ds by higher is and lower e. Across California species, positive Dt-Ds coordination arose due to it-is coordination and impacts of the variation in e. A Dt-Ds trade-off was found in only 30% of studies. Heuristic modeling showed that species sets would have the highest carbon balance with a positive or negative relationship or decoupling of Dt and Ds, depending on environmental conditions. CONCLUSIONS: Shared precursor cells of trichomes and stomata do not limit higher numbers of both cell types or drive a general Dt-Ds trade-off across species. This developmental flexibility across diverse species enables different Dt-Ds associations according to environmental pressures. Developmental trait analysis can clarify how contrasting trait associations would arise within and across species.


Assuntos
Estômatos de Plantas , Tricomas , Tricomas/crescimento & desenvolvimento , Estômatos de Plantas/crescimento & desenvolvimento , California , Especificidade da Espécie , Carbono/metabolismo
4.
Nat Commun ; 14(1): 6629, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857672

RESUMO

The relationship between stomatal traits and environmental drivers across plant communities has important implications for ecosystem carbon and water fluxes, but it has remained unclear. Here, we measure the stomatal morphology of 4492 species-site combinations in 340 vegetation plots across China and calculate their community-weighted values for mean, variance, skewness, and kurtosis. We demonstrate a trade-off between stomatal density and size at the community level. The community-weighted mean and variance of stomatal density are mainly associated with precipitation, while that of stomatal size is mainly associated with temperature, and the skewness and kurtosis of stomatal traits are less related to climatic and soil variables. Beyond mean climate variables, stomatal trait moments also vary with climatic seasonality and extreme conditions. Our findings extend the knowledge of stomatal trait-environment relationships to the ecosystem scale, with applications in predicting future water and carbon cycles.


Assuntos
Ecossistema , Plantas , Solo , Temperatura , Água , Folhas de Planta
5.
Physiol Plant ; 175(4): e13974, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37403811

RESUMO

Intra-specific trait variation (ITV) plays a role in processes at a wide range of scales from organs to ecosystems across climate gradients. Yet, ITV remains rarely quantified for many ecophysiological traits typically assessed for species means, such as pressure volume (PV) curve parameters including osmotic potential at full turgor and modulus of elasticity, which are important in plant water relations. We defined a baseline "reference ITV" (ITVref ) as the variation among fully exposed, mature sun leaves of replicate individuals of a given species grown in similar, well-watered conditions, representing the conservative sampling design commonly used for species-level ecophysiological traits. We hypothesized that PV parameters would show low ITVref relative to other leaf morphological traits, and that their intraspecific relationships would be similar to those previously established across species and proposed to arise from biophysical constraints. In a database of novel and published PV curves and additional leaf structural traits for 50 diverse species, we found low ITVref for PV parameters relative to other morphological traits, and strong intraspecific relationships among PV traits. Simulation modeling showed that conservative ITVref enables the use of species-mean PV parameters for scaling up from spectroscopic measurements of leaf water content to enable sensing of leaf water potential.


Assuntos
Ecossistema , Folhas de Planta , Humanos , Fenótipo , Folhas de Planta/fisiologia , Clima , Água
6.
New Phytol ; 239(6): 2099-2107, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37386735

RESUMO

A surge of papers have reported low leaf vulnerability to xylem embolism during drought. Here, we focus on the less studied, and more sensitive, outside-xylem leaf hydraulic responses to multiple internal and external conditions. Studies of 34 species have resolved substantial vulnerability to dehydration of the outside-xylem pathways, and studies of leaf hydraulic responses to light also implicate dynamic outside-xylem responses. Detailed experiments suggest these dynamic responses arise at least in part from strong control of radial water movement across the vein bundle sheath. While leaf xylem vulnerability may influence leaf and plant survival during extreme drought, outside-xylem dynamic responses are important for the control and resilience of water transport and leaf water status for gas exchange and growth.


Assuntos
Folhas de Planta , Água , Folhas de Planta/fisiologia , Água/metabolismo , Xilema/fisiologia , Transporte Biológico , Secas
7.
Plant Cell Environ ; 46(7): 2031-2045, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37151121

RESUMO

The incidence and severity of global mangrove mortality due to drought is increasing. Yet, little is understood of the capacity of mangroves to show long-term acclimation of leaf water relations to severe drought. We tested for differences between mid-dry season leaf water relations in two cooccurring mangroves, Aegiceras corniculatum and Rhizophora stylosa before a severe drought (a heatwave combined with low rainfall) and after its relief by the wet season. Consistent with ecological stress memory, the legacy of severe drought enhanced salinity tolerance in the subsequent dry season through coordinated adjustments that reduced the leaf water potential at the turgor loss point and increased cell wall rigidity. These adjustments enabled maintenance of turgor and relative water content with increasing salinity. As most canopy growth occurs during the wet season, acclimation to the 'memory' of higher salinity in the previous dry season enables greater leaf function with minimal adjustments, as long-lived leaves progress from wet through dry seasons. However, declining turgor safety margins - the difference between soil water potential and leaf water potential at turgor loss - implied increasing limitation to water use with increasing salinity. Thus, plasticity in leaf water relations contributes fundamentally to mangrove function under varying salinity regimes.


Assuntos
Secas , Tolerância ao Sal , Estações do Ano , Folhas de Planta , Água
8.
New Phytol ; 239(2): 576-591, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37222272

RESUMO

Water stress can cause declines in plant function that persist after rehydration. Recent work has defined 'resilience' traits characterizing leaf resistance to persistent damage from drought, but whether these traits predict resilience in whole-plant function is unknown. It is also unknown whether the coordination between resilience and 'resistance' - the ability to maintain function during drought - observed globally occurs within ecosystems. For eight rainforest species, we dehydrated and subsequently rehydrated leaves, and measured water stress thresholds for declines in rehydration capacity and maximum quantum yield of photosystem II (Fv /Fm ). We tested correlations with embolism resistance and dry season water potentials (ΨMD ), and calculated safety margins for damage (ΨMD - thresholds) and tested correlations with drought resilience in sap flow and growth. Ψ thresholds for persistent declines in Fv /Fm , indicating resilience, were positively correlated with ΨMD and thresholds for leaf vein embolism. Safety margins for persistent declines in Fv /Fm , but not rehydration capacity, were positively correlated with drought resilience in sap flow. Correlations between resistance and resilience suggest that species' differences in performance during drought are perpetuated after drought, potentially accelerating shifts in forest composition. Resilience to photochemical damage emerged as a promising functional trait to characterize whole-plant drought resilience.


Assuntos
Desidratação , Floresta Úmida , Ecossistema , Secas , Folhas de Planta , Árvores
9.
Glob Chang Biol ; 29(7): 2015-2029, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36600482

RESUMO

Soil and atmospheric droughts increasingly threaten plant survival and productivity around the world. Yet, conceptual gaps constrain our ability to predict ecosystem-scale drought impacts under climate change. Here, we introduce the ecosystem wilting point (ΨEWP ), a property that integrates the drought response of an ecosystem's plant community across the soil-plant-atmosphere continuum. Specifically, ΨEWP defines a threshold below which the capacity of the root system to extract soil water and the ability of the leaves to maintain stomatal function are strongly diminished. We combined ecosystem flux and leaf water potential measurements to derive the ΨEWP of a Quercus-Carya forest from an "ecosystem pressure-volume (PV) curve," which is analogous to the tissue-level technique. When community predawn leaf water potential (Ψpd ) was above ΨEWP (=-2.0 MPa), the forest was highly responsive to environmental dynamics. When Ψpd fell below ΨEWP , the forest became insensitive to environmental variation and was a net source of carbon dioxide for nearly 2 months. Thus, ΨEWP is a threshold defining marked shifts in ecosystem functional state. Though there was rainfall-induced recovery of ecosystem gas exchange following soaking rains, a legacy of structural and physiological damage inhibited canopy photosynthetic capacity. Although over 16 growing seasons, only 10% of Ψpd observations fell below ΨEWP , the forest is commonly only 2-4 weeks of intense drought away from reaching ΨEWP , and thus highly reliant on frequent rainfall to replenish the soil water supply. We propose, based on a bottom-up analysis of root density profiles and soil moisture characteristic curves, that soil water acquisition capacity is the major determinant of ΨEWP , and species in an ecosystem require compatible leaf-level traits such as turgor loss point so that leaf wilting is coordinated with the inability to extract further water from the soil.


Assuntos
Carya , Quercus , Ecossistema , Secas , Quercus/fisiologia , Árvores/fisiologia , Florestas , Água/fisiologia , Folhas de Planta/fisiologia , Solo
10.
Plant Cell Environ ; 46(3): 736-746, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36564901

RESUMO

Within vascular plants, the partitioning of hydraulic resistance along the soil-to-leaf continuum affects transpiration and its response to environmental conditions. In trees, the fractional contribution of leaf hydraulic resistance (Rleaf ) to total soil-to-leaf hydraulic resistance (Rtotal ), or fRleaf (=Rleaf /Rtotal ), is thought to be large, but this has not been tested comprehensively. We compiled a multibiome data set of fRleaf using new and previously published measurements of pressure differences within trees in situ. Across 80 samples, fRleaf averaged 0.51 (95% confidence interval [CI] = 0.46-0.57) and it declined with tree height. We also used the allometric relationship between field-based measurements of soil-to-leaf hydraulic conductance and laboratory-based measurements of leaf hydraulic conductance to compute the average fRleaf for 19 tree samples, which was 0.40 (95% CI = 0.29-0.56). The in situ technique produces a more accurate descriptor of fRleaf because it accounts for dynamic leaf hydraulic conductance. Both approaches demonstrate the outsized role of leaves in controlling tree hydrodynamics. A larger fRleaf may help stems from loss of hydraulic conductance. Thus, the decline in fRleaf with tree height would contribute to greater drought vulnerability in taller trees and potentially to their observed disproportionate drought mortality.


Assuntos
Solo , Árvores , Árvores/fisiologia , Água/fisiologia , Transpiração Vegetal/fisiologia , Folhas de Planta/fisiologia
11.
New Phytol ; 237(1): 22-47, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36239086

RESUMO

Rising temperatures are influencing forests on many scales, with potentially strong variation vertically across forest strata. Using published research and new analyses, we evaluate how microclimate and leaf temperatures, traits, and gas exchange vary vertically in forests, shaping tree, and ecosystem ecology. In closed-canopy forests, upper canopy leaves are exposed to the highest solar radiation and evaporative demand, which can elevate leaf temperature (Tleaf ), particularly when transpirational cooling is curtailed by limited stomatal conductance. However, foliar traits also vary across height or light gradients, partially mitigating and protecting against the elevation of upper canopy Tleaf . Leaf metabolism generally increases with height across the vertical gradient, yet differences in thermal sensitivity across the gradient appear modest. Scaling from leaves to trees, canopy trees have higher absolute metabolic capacity and growth, yet are more vulnerable to drought and damaging Tleaf than their smaller counterparts, particularly under climate change. By contrast, understory trees experience fewer extreme high Tleaf 's but have fewer cooling mechanisms and thus may be strongly impacted by warming under some conditions, particularly when exposed to a harsher microenvironment through canopy disturbance. As the climate changes, integrating the patterns and mechanisms reviewed here into models will be critical to forecasting forest-climate feedback.


Assuntos
Ecossistema , Florestas , Árvores , Folhas de Planta , Microclima
12.
Plant Cell ; 35(1): 67-108, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36018271

RESUMO

We present unresolved questions in plant abiotic stress biology as posed by 15 research groups with expertise spanning eco-physiology to cell and molecular biology. Common themes of these questions include the need to better understand how plants detect water availability, temperature, salinity, and rising carbon dioxide (CO2) levels; how environmental signals interface with endogenous signaling and development (e.g. circadian clock and flowering time); and how this integrated signaling controls downstream responses (e.g. stomatal regulation, proline metabolism, and growth versus defense balance). The plasma membrane comes up frequently as a site of key signaling and transport events (e.g. mechanosensing and lipid-derived signaling, aquaporins). Adaptation to water extremes and rising CO2 affects hydraulic architecture and transpiration, as well as root and shoot growth and morphology, in ways not fully understood. Environmental adaptation involves tradeoffs that limit ecological distribution and crop resilience in the face of changing and increasingly unpredictable environments. Exploration of plant diversity within and among species can help us know which of these tradeoffs represent fundamental limits and which ones can be circumvented by bringing new trait combinations together. Better defining what constitutes beneficial stress resistance in different contexts and making connections between genes and phenotypes, and between laboratory and field observations, are overarching challenges.


Assuntos
Dióxido de Carbono , Mudança Climática , Estresse Fisiológico , Dióxido de Carbono/metabolismo , Transpiração Vegetal/fisiologia , Plantas/metabolismo , Água/metabolismo
13.
Trends Plant Sci ; 28(1): 43-53, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36115777

RESUMO

With the rapid accumulation of plant trait data, major opportunities have arisen for the integration of these data into predicting ecosystem primary productivity across a range of spatial extents. Traditionally, traits have been used to explain physiological productivity at cell, organ, or plant scales, but scaling up to the ecosystem scale has remained challenging. Here, we show the need to combine measures of community-level traits and environmental factors to predict ecosystem productivity at landscape or biogeographic scales. We show how theory can extend the production ecology equation to enormous potential for integrating traits into ecological models that estimate productivity-related ecosystem functions across ecological scales and to anticipate the response of terrestrial ecosystems to global change.


Assuntos
Ecossistema , Plantas , Plantas/genética , Modelos Teóricos , Fenótipo
14.
Ecol Lett ; 25(12): 2637-2650, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36257904

RESUMO

Considering the global intensification of aridity in tropical biomes due to climate change, we need to understand what shapes the distribution of drought sensitivity in tropical plants. We conducted a pantropical data synthesis representing 1117 species to test whether xylem-specific hydraulic conductivity (KS ), water potential at leaf turgor loss (ΨTLP ) and water potential at 50% loss of KS (ΨP50 ) varied along climate gradients. The ΨTLP and ΨP50 increased with climatic moisture only for evergreen species, but KS did not. Species with high ΨTLP and ΨP50 values were associated with both dry and wet environments. However, drought-deciduous species showed high ΨTLP and ΨP50 values regardless of water availability, whereas evergreen species only in wet environments. All three traits showed a weak phylogenetic signal and a short half-life. These results suggest strong environmental controls on trait variance, which in turn is modulated by leaf habit along climatic moisture gradients in the tropics.


Assuntos
Secas , Folhas de Planta , Clima Tropical , Filogenia , Folhas de Planta/fisiologia , Xilema
15.
AoB Plants ; 14(4): plac030, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35912337

RESUMO

Hydrophilic amendments can enhance soil moisture content, which, in turn, can improve crop health under drought conditions. Understanding how different hydrogels interact with specific crops is necessary for optimal application. The soil conditioning abilities of a trehalose hydrogel and polyacrylate-based hydrogel were evaluated for tomatoes (Solanum lycopersicum) subjected to drought. Tomato plants were transplanted into individual pots with soil that contained trehalose hydrogel (0.4 wt%), polyacrylate-based hydrogel (0.4 wt%), or no hydrogel and subjected to a well-watered treatment or to pronounced soil drought, with or without rewatering. The health of tomato plants was monitored by measuring leaf total chlorophyll (a + b) concentration, leaf water potential (Ψleaf), stomatal conductance (g s) and relative growth rate (RGR). The polyacrylate-based hydrogel, but not the trehalose hydrogel, improved tomato plant function under drought conditions, as indicated by improved g s and RGR relative to the well-watered control. However, when subjected to a second drought, neither hydrogel was effective, and neither prolonged survival. The more hydrophilic polyacrylate-based hydrogel demonstrated promise in improving the growth of tomato plants under drought when included as a soil amendment at 0.4 wt%. This research is important for understanding the effects of these hydrogels as soil conditioners in drought prone systems.

16.
New Phytol ; 236(2): 413-432, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35811421

RESUMO

Ecophysiologists have reported a range of relationships, including intrinsic trade-offs across and within species between plant relative growth rate in high resource conditions (RGR) vs adaptation to tolerate cold or arid climates, arising from trait-based mechanisms. Few studies have considered ecotypes within a species, in which the lack of a trade-off would contribute to a wide species range and resilience to climate change. For 15 ecotypes of Arabidopsis thaliana in a common garden we tested for associations between RGR vs adaptation to cold or dry native climates and assessed hypotheses for its mediation by 15 functional traits. Ecotypes native to warmer, drier climates had higher leaf density, leaf mass per area, root mass fraction, nitrogen per leaf area and carbon isotope ratio, and lower osmotic potential at full turgor. Relative growth rate was statistically independent of the climate of the ecotype native range and of individual functional traits. The decoupling of RGR and cold or drought adaptation in Arabidopsis is consistent with multiple stress resistance and avoidance mechanisms for ecotypic climate adaptation and would contribute to the species' wide geographic range and resilience as the climate changes.


Assuntos
Arabidopsis , Adaptação Fisiológica , Isótopos de Carbono , Ecótipo , Nitrogênio , Folhas de Planta
17.
J Exp Bot ; 73(18): 6405-6416, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-35716087

RESUMO

Shifts in stomatal trait distributions across contrasting environments and their linkage with ecosystem productivity at large spatial scales have been unclear. Here, we measured the maximum stomatal conductance (g), stomatal area fraction (f), and stomatal space-use efficiency (e, the ratio of g to f) of 800 plant species ranging from tropical to cold-temperate forests, and determined their values for community-weighted mean, variance, skewness, and kurtosis. We found that the community-weighted means of g and f were higher in drier sites, and thus, that drought 'avoidance' by water availability-driven growth pulses was the dominant mode of adaptation for communities at sites with low water availability. Additionally, the variance of g and f was also higher at arid sites, indicating greater functional niche differentiation, whereas that for e was lower, indicating the convergence in efficiency. When all other stomatal trait distributions were held constant, increasing kurtosis or decreasing skewness of g would improve ecosystem productivity, whereas f showed the opposite patterns, suggesting that the distributions of inter-related traits can play contrasting roles in regulating ecosystem productivity. These findings demonstrate the climatic trends of stomatal trait distributions and their significance in the prediction of ecosystem productivity.


Assuntos
Ecossistema , Florestas , Secas , Adaptação Fisiológica , Água , Folhas de Planta
18.
Plant Cell Environ ; 45(7): 2037-2061, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35394651

RESUMO

Leaf water potential (ψleaf ), typically measured using the pressure chamber, is the most important metric of plant water status, providing high theoretical value and information content for multiple applications in quantifying critical physiological processes including drought responses. Pressure chamber measurements of ψleaf (ψleafPC ) are most typical, yet, the practical complexity of the technique and of the underlying theory has led to ambiguous understanding of the conditions to optimize measurements. Consequently, specific techniques and precautions diversified across the global research community, raising questions of reliability and repeatability. Here, we surveyed specific methods of ψleafPC from multiple laboratories, and synthesized experiments testing common assumptions and practices in ψleafPC for diverse species: (i) the need for equilibration of previously transpiring leaves; (ii) leaf storage before measurement; (iii) the equilibration of ψleaf for leaves on bagged branches of a range of dehydration; (iv) the equilibration of ψleaf across the lamina for bagged leaves, and the accuracy of measuring leaves with artificially 'elongated petioles'; (v) the need in ψleaf measurements for bagging leaves and high humidity within the chamber; (vi) the need to avoid liquid water on leaf surfaces; (vii) the use of 'pulse' pressurization versus gradual pressurization; and (viii) variation among experimenters in ψleafPC determination. Based on our findings we provide a best practice protocol to maximise accuracy, and provide recommendations for ongoing species-specific tests of important assumptions in future studies.


Assuntos
Folhas de Planta , Água , Secas , Folhas de Planta/fisiologia , Reprodutibilidade dos Testes , Água/fisiologia
19.
Ecol Lett ; 25(6): 1442-1457, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35397188

RESUMO

Variation in the architecture of trait networks among ecosystems has been rarely quantified, but can provide high resolution of the contrasting adaptation of the whole phenotype. We constructed leaf trait networks (LTNs) from 35 structural, anatomical and compositional leaf traits for 394 tree species in nine forests from tropical to cold-temperate zones in China. Our analyses supported the hypothesis that LTNs would increase in modular complexity across forests in parallel with species-richness and climatic warmth and moisture, due to reduced phenotypic constraints and greater opportunities for niche differentiation. Additionally, we found that within LTNs, leaf economics traits including leaf thickness would have central importance, acting as hub traits with high connectivity due to their contributions to multiple functions. Across the continent, the greater species richness and trait diversity observed in forests under resource-rich climates enable greater complexity in whole phenotype structure and function as indicated by the trait network architecture.


Assuntos
Ecossistema , Clima Tropical , Florestas , Fenótipo , Folhas de Planta , Árvores
20.
New Phytol ; 234(5): 1664-1677, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35201608

RESUMO

Tree size shapes forest carbon dynamics and determines how trees interact with their environment, including a changing climate. Here, we conduct the first global analysis of among-site differences in how aboveground biomass stocks and fluxes are distributed with tree size. We analyzed repeat tree censuses from 25 large-scale (4-52 ha) forest plots spanning a broad climatic range over five continents to characterize how aboveground biomass, woody productivity, and woody mortality vary with tree diameter. We examined how the median, dispersion, and skewness of these size-related distributions vary with mean annual temperature and precipitation. In warmer forests, aboveground biomass, woody productivity, and woody mortality were more broadly distributed with respect to tree size. In warmer and wetter forests, aboveground biomass and woody productivity were more right skewed, with a long tail towards large trees. Small trees (1-10 cm diameter) contributed more to productivity and mortality than to biomass, highlighting the importance of including these trees in analyses of forest dynamics. Our findings provide an improved characterization of climate-driven forest differences in the size structure of aboveground biomass and dynamics of that biomass, as well as refined benchmarks for capturing climate influences in vegetation demographic models.


Assuntos
Carbono , Clima Tropical , Biomassa , Temperatura , Madeira
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA